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Role of Cholesterol- Associated 
Steatohepatitis in the Development of 
NASH
Christian L. Horn ,1 Amilcar L. Morales,1 Christopher Savard,2-4 Geoffrey C Farrell,5 and George N. Ioannou 2-4

The rising prevalence of nonalcoholic fatty liver disease (NAFLD) and NAFLD- related cirrhosis in the United States 
and globally highlights the need to better understand the mechanisms causing progression of hepatic steatosis to fi-
brosing steatohepatitis and cirrhosis in a small proportion of patients with NAFLD. Accumulating evidence suggests 
that lipotoxicity mediated by hepatic free cholesterol (FC) overload is a mechanistic driver for necroinflammation and 
fibrosis, characteristic of nonalcoholic steatohepatitis (NASH), in many animal models and also in some patients with 
NASH. Diet, lifestyle, obesity, key genetic polymorphisms, and hyperinsulinemia secondary to insulin resistance are 
pivotal drivers leading to aberrant cholesterol signaling, which leads to accumulation of FC within hepatocytes. FC 
overload in hepatocytes can lead to ER stress, mitochondrial dysfunction, development of toxic oxysterols, and choles-
terol crystallization in lipid droplets, which in turn lead to hepatocyte apoptosis, necrosis, or pyroptosis. Activation of 
Kupffer cells and hepatic stellate cells by hepatocyte signaling and cholesterol loading contributes to this inflammation 
and leads to hepatic fibrosis. Cholesterol accumulation in hepatocytes can be readily prevented or reversed by statins. 
Observational studies suggest that use of statins in NASH not only decreases the substantially increased cardiovascular 
risk, but may ameliorate liver pathology. Conclusion: Hepatic FC loading may result in cholesterol- associated steatohep-
atitis and play an important role in the development and progression of NASH. Statins appear to provide significant 
benefit in preventing progression to NASH and NASH- cirrhosis. Randomized controlled trials are needed to demon-
strate whether statins or statin/ezetimibe combination can effectively reverse steatohepatitis and liver fibrosis in patients 
with NASH. (Hepatology Communications 2022;6:12-35).

Nonalcoholic fatty liver disease (NAFLD) 
encompasses a wide histological spectrum 
of disease ranging from simple steatosis 

and nonalcoholic steatohepatitis (NASH) to cirrho-
sis and hepatocellular carcinoma.(1) It is the most 
common cause of chronic liver disease worldwide, 
with a prevalence estimated to be 24%- 26%.(2,3) The 
prevalence of NASH in North America is estimated 
to be about 24.1%, with the highest prevalence 

reported in the Middle East (31.7%) and South 
America (30.4%).(3) About 41% of patients with 
NASH experience progression of fibrosis with an 
incidence of stage 3 or 4 fibrosis of 68 per 1,000 
person- years.(1,3,4) NAFLD/NASH is currently the 
second leading indication for liver transplantation 
and is expected to become the number- one indica-
tion in the next few years, with excellent long- term 
posttransplant survival. (1- 3,5,6)
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Many risk factors for developing hepatic steato-
sis have been identified including the metabolic 
syndrome (MetS), obesity, insulin resistance with 
hyperinsulinemia, personal or family history of type 
2 diabetes mellitus (T2DM), and dyslipidemia.(1,3) 
Of these risk factors, T2DM and insulin resistance 
are very common in NAFLD and may play a pivotal 
role in NAFLD/NASH development.(3,7- 10) Despite 
these known risk factors, we do not yet know the 
causative factor(s) without which development and 
progression of NASH cannot possibly occur in cer-
tain patients. In this review, we examine the data 
supporting the hypothesis that hepatic cholesterol is 
a key pathogenetic factor driving the development 
of NASH at least in a subset of patients, and pro-
pose the term cholesterol- associated steatohepatitis 
(CASH) to describe this mechanistic pathway by 
which hepatic cholesterol may result in the devel-
opment of steatohepatitis. These considerations are 
critical, because unless a causative agent is uncov-
ered, it is unlikely that a highly effective treatment 
of NASH will ever be identified. Although there is 
mounting evidence that cholesterol may also lead 
to hepatic carcinogenesis, we will not focus on the 
association between cholesterol and hepatocellular 
carcinoma in this review.

Pathogenesis of NASH: 
Conceptual Models and the 
Role of Cholesterol

Historically, the two- hit hypothesis proposed a 
stepwise progression from normal liver to hepatic 
steatosis and then to NASH.(11,12) This theory pos-
tulates that insulin resistance is the “first hit,” which 
promotes accumulation of fatty acids in the liver, 
leading to steatosis.(13) Hyperinsulinemia results in 
increased lipolysis from peripheral adipose tissue and 
altered hepatic gene transcription, which promotes 
free fatty acid uptake and de novo lipogenesis.(13- 15) 
Oxidative stress is the “second hit,” resulting from 
increased oxidation of fatty acids, and causing reactive 
oxygen species (ROS) formation, lipid peroxidation, 
DNA damage, mitochondrial dysfunction, and release 
of proinflammatory cytokines.(16,17) These cellular 
mechanisms result in hepatocyte damage, inflamma-
tion, and fibrosis, characteristic of steatohepatitis.(16,17)

More recently, a “multiple parallel hits” hypoth-
esis has been proposed, in which multiple cellu-
lar mechanisms, working simultaneously to cause a 
“perfect storm,” result in hepatic inflammation and 
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progression to NASH.(18) Cellular mechanisms that 
could be altered and lead to inflammation include 
abnormal lipid metabolism, mitochondrial oxidative 
injury, endoplasmic reticulum (ER) stress, genetic 
polymorphisms, altered immune responses, and gut 
microbiome dysbiosis.(18- 20) It is postulated that the 
accumulation of lipotoxic lipids within the liver, which 
interact with pro- inflammatory signals, causes these 
cellular abnormalities, which leads to inflammation 
and fibrosis.(21) Although triglycerides are the most 
common lipids in the liver by far, it is likely that they 
represent a “safe” storage molecule for fatty acids.(22) 
Instead, it is the accumulation of other lipotoxic lip-
ids, such as cholesterol (and potentially free fatty 
acids, diacylglycerol, ceramides, and others), which 
are postulated to result in cellular dysfunction.(21,23,24) 
Cholesterol has a relatively “safe” storage option (i.e., 
its esterification to cholesterol esters [CEs]); however, 
hepatic free (i.e., unesterified) cholesterol is highly 
toxic to multiple cellular processes and organelles 
even if only slightly increased.(25) Thus, we propose 
that in a subset of patients with NASH, hepatic cho-
lesterol accumulation results in the development of 
cholesterol- associated steatohepatitis (CASH) and is 
the main driver of the necroinflammation and fibro-
sis causing NASH, while dietary, genetic, and lifestyle 
co- factors either lead to the accumulation of hepatic 
cholesterol or interact which hepatic cholesterol to 
promote NASH, as shown in Fig. 1.

Hepatic Cholesterol 
Metabolism

The liver is the most important organ that controls 
body cholesterol homeostasis. In the nonpathologic 
state, the mouse liver has a relatively low cholesterol 
concentration (132 mg/kg), but it has a high flow of 
sterols through the liver every day, consistent with its 
role in lipoprotein and bile acid synthesis and homeo-
stasis (143 mg/kg/day).(26) When the sum total of the 
pathways involved in synthesis and uptake of cho-
lesterol (FIG. 2A) exceeds the pathways that lead to 
removal of cholesterol (FIG. 2B), cholesterol accumu-
lates in hepatocytes.(27)

A critical component of the CASH hypothesis is 
that the liver (not adipose tissue) is the body’s storage 
site for excess cholesterol. Excess cholesterol is stored 

in the liver within hepatocyte lipid droplets (LDs) as 
CEs.(28) Once previously believed to be inert storage 
vessels, LDs have now been recognized as metabol-
ically active organelles within cells that serve a wide 
variety of functions. LDs are derived from the ER and 
consist of a core of neutral lipids (CEs and triglycer-
ide) that are surrounded by a phospholipid monolayer, 
studded with a diverse array of proteins.(29,30) The 
phospholipid monolayer contains FC, which affects 
LD membrane properties, including surface and line 
tension, size, and interaction with other LDs(29,30) 
(FIG. 2C).

Regulation oF CHolesteRol 
Homeostasis

Cholesterol homeostasis is tightly regulated by 
a number of nuclear transcription factors, three of 
which have also been linked to NAFLD pathogen-
esis: sterol regulatory element binding protein- 2 
(SREBP- 2), farnesoid X receptor (FXR), and liver X 
receptor (LXR) (FIG. 3).

SREBPs are a family of membrane- bound transcrip-
tion factors that sense membrane cholesterol and fatty 

Fig. 1. Model of the CASH hypothesis. In the CASH model, 
hepatic cholesterol accumulation is the main driver of cellular 
derangement, causing NASH in a subset of patients, whereas dietary, 
genetic, and lifestyle co- factors either lead to the accumulation 
of hepatic cholesterol (yellow arrows) or interact which hepatic 
cholesterol to promote CASH (blue arrows). Abbreviations: FFA, 
free fatty acids; HSD17B13, 17β hydroxysteroid dehydrogenase 
13; LIPA, lysosomal acid lipase; and TM6SF2, transmembrane 6 
superfamily member 2.
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acid content and modulate the transcription of genes 
involved in cholesterol and fatty acid synthesis and 
uptake.(31,32) SREBP- 1 is primarily involved in fatty 
acid, triglyceride, and phospholipid pathways, whereas 
SREBP- 2 is involved in cholesterol metabolism.(33,34) 
SREBP- 2 is a resident of the ER, where it is bound to 
SREBP cleavage activating protein (Scap).(35) When 
Scap senses cholesterol depletion, SREBP- 2 is trans-
ported to the Golgi complex, where it is cleaved to 
the active form and enters the nucleus to activate the 
transcription of genes for cholesterol synthesis and 
uptake, including 3- hydroxy- 3- methylglutaryl coen-
zyme A reductase (HMGCoAR) and low- density 
lipoprotein receptor (LDLR).(35,36)

FXR is a nuclear receptor that senses bile acids and 
is extensively involved in bile acid, lipid, and glucose 
homeostasis.(37- 39) In the liver, FXR up- regulates scaven-
ger receptor class B type 1 (SR- B1), resulting in increased 
uptake of high- density lipoprotein (HDL) cholesterol 
from the circulation, increases ATP- binding cassette 
transporter (ABC) G5 and G8 (ABCG5/G8) specifi-
cally in mice, and bile salt export pump (BSEP) synthesis, 
resulting in biliary excretion of cholesterol and bile acids, 
but also inhibits CYP7A1 preventing cholesterol conver-
sion to bile acids.(37,40,41) FXR also promotes removal of 
triglycerides from hepatocytes by increasing β- oxidation 
and decreasing lipogenesis.(42) In hepatic stellate cells 
(HSCs), FXR creates a quiescent and pro- apoptotic phe-
notype, which promotes liver fibrosis resolution.(43)

LXRs are nuclear cholesterol sensors that are acti-
vated by high intracellular oxysterols.(44,45) Following 
activation by oxysterols, LXRα forms a heterodi-
mer with retinoid X receptor.(44) LXRα results in 
reverse cholesterol transport and hepatic cholesterol 
metabolism by increasing the expression of macro-
phage ABCA1/G1, resulting in increased HDL lev-
els, and increasing hepatic, macrophage, and intestinal 
ABCG5/G8, causing net cholesterol excretion from 
the body, but also increases LDLR degradation on 
hepatocytes.(46- 50) In rodent models, LXR also induces 
expression of CYP7A1, resulting in cholesterol conver-
sion to bile acids; however, this phenomenon is not seen 
in humans.(51) Additionally, duodenal Niemann- Pick 
type C1 like 1 protein (NPC1L1) expression has been 
shown to be negatively correlated with LXR expres-
sion, inhibiting intestinal cholesterol absorption, result-
ing in fecal excretion of cholesterol.(52) LXRα agonists 
in mice demonstrated reduced hepatic inflammation 
and fibrosis by decreasing cholesterol- mediated acti-
vation of hepatic Kupffer cells (KCs) and HSCs.(53,54)

CHolesteRol esteRiFiCation
To prevent the toxic effects of FC within hepato-

cytes, FC is esterified to CE and stored in hepatocyte 
LDs.(55) One of the enzymes responsible for cholesterol 
esterification in hepatocytes is acyl- CoA:cholesterol 
acyltransferase enzyme 2 (ACAT2).(56) ACAT2 is a 

Fig. 2. Cholesterol trafficking through the hepatocyte. (A) Cholesterol uptake and synthesis. Dietary cholesterol is absorbed in the jejunal 
mucosa through NPC1L1, incorporated into chylomicrons (CMs), and reaches the liver in CM remnants. CM remnants are taken up by the 
liver through interaction of the apoE protein on the CM remnant and LDLR on hepatocytes, which also binds to circulating LDL particles 
through interaction with apoB- 100 on the LDL surface. After binding to the LDLR, the complex undergoes receptor- mediated endocytosis, 
processing through the late endosome/lysosome compartment, and transport into the metabolically active pool of cholesterol in the cytosol 
through NPC1. CE taken from HDL particles are selectively transported into the cytosol through SR- B1, followed by hydrolysis through 
nCEH to join the metabolically active pool of cholesterol in the cytosol. Cholesterol can also be taken up from bile through NPC1L1 on 
the canalicular membrane of hepatocytes, when cells are deprived of cholesterol. Finally, cholesterol can also be synthesized de novo through 
the HMGCoAR, which is tightly regulated by SREBP- 2, the principal transcriptional activator of HMGCoAR. (B) Cholesterol secretion 
and excretion. Transport of cholesterol out of the cell is performed primarily through members of a superfamily of ABC transporters that use 
ATP to transport lipids across membranes. ABCA1 is a transmembrane protein present on the basolateral plasma membrane of hepatocytes 
that removes lipids from the cell membrane to an extracellular acceptor apolipoprotein ApoA- I. ABCA1 interacts with lipid- free apoA- 1 
to generate nascent HDL particles, promoting cholesterol efflux from the cell. On the canalicular membrane of hepatocytes, ABCG5 and 
ABCG8 form a heterodimer that functions to excrete sterols into the bile. Cholesterol may also be secreted into the circulation in the form 
of VLDL particles. Finally, cholesterol may be converted to bile acids and excreted into bile through BSEP, an ABC transporter (ABCB11) 
located on the canalicular membrane of hepatocytes. In the classical pathway, the rate- limiting step for cholesterol conversion into bile acid is 
the microsomal cytochrome P450 CYP7A1, which results in 7- hydroxycholesterol; however, alternative pathways include the mitochondrial 
CYP27A enzyme and 25- hydroxylase enzyme, forming 27- hydroxycholesterol or 25- hydroxycholesterol, respectively. (C) Hepatocyte LD. 
The LD membrane consists of a monolayer of phospholipids, and FC and is covered with proteins, including perilipins. The interior of the 
LD consists of triglycerides and CEs. When the concentration of FC within the LD membrane exceeds the saturation threshold, FC can 
precipitate as cholesterol crystals in the periphery of the LD. Abbreviations: apoA- 1, apolipoprotein A- 1; apoB- 100, apolipoprotein B- 100; 
apoE, apolipoprotein E; BA, bile acid; CM, chylomicron; CoA, coenzyme A; NPC1, Niemann- Pick type C1.
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transmembrane protein found in the ER in the liver 
but not in adipose tissue; it integrates newly formed 
CEs into the ER membrane, which can either be 
incorporated into apolipoprotein B (ApoB) or bud off 
to form LDs.(29,30,57,58) When FC is needed by the 
hepatocyte, ACAT2 is down- regulated and neutral 
cholesterol ester hydrolase (nCEH) hydrolyzes CE to 
FC.(55,59)

Hepatic Cholesterol 
Accumulation in NASH

In the setting of NAFLD, numerous derange-
ments to hepatic cholesterol homeostasis have been 

identified, which lead to the accumulation of hepatic 
cholesterol.(60) In mice, both hyperinsulinemia and 
inflammation lead to loss of the inhibitory effect 
of elevated plasma cholesterol on Scap/SREBP- 2, 
resulting in hepatic cholesterol accumulation.(61- 63) 
Increased levels of nuclear SREBP- 2, HMGCoAR 
messenger RNA (mRNA), HMGCoAR protein, 
and HMGCoAR dephosphorylation, resulting in the 
active form of the enzyme, have been demonstrated in 
patients with NAFLD/NASH.(60,64) Despite elevated 
nuclear SREBP- 2 levels, LDLR levels are actually 
down- regulated in patients with NAFLD/NASH, but 
an alternative hepatic scavenger receptor for oxidized 
low density lipoprotein (oxLDL) particles, CD36, is 
increased relative to the severity of steatosis.(15,60,63,64) 
Export of cholesterol out of the cell is also decreased, 

Fig. 3. Regulation of cholesterol homeostasis: The nuclear receptors SREBP- 2 (black arrows), FXR (orange arrows), and LXR (blue 
arrows) are intimately involved in regulating cholesterol metabolism in a number of different mechanisms. The SREBP- 2/Scap complex 
senses cholesterol content in the ER, and when cholesterol levels are low, SREPB- 2 disassociates with Scap, travels to the Golgi apparatus 
where it is cleaved, and then promotes transcription of genes involved in cholesterol synthesis and uptake. FXR senses bile acids and 
triggers the transcription of SR- B1 and ABCG5/8, but inhibits the activity of CYP7A1, preventing further bile acid formation. LXR 
binds to oxysterols in the cell, and then, after combining with retinoid X receptor, up- regulates ABCA1, CYP7A1, and ABCG5/8 
transcription, but down- regulates LDLR transcription. Abbreviations: BA, bile acid; and RXR, retinoid X receptor.
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with decreased mRNA levels of ABCA1, ABCG1, 
and ABCG5.(60,63)

Typical esterification/de- esterification activity 
in healthy individuals is determined by the relative 
concentration of ACAT2, while the concentration 
of nCEH remains relatively constant.(55) However, 
in patients with NAFLD, there is a 6- fold higher 
concentration of nCEH compared with healthy 
controls.(60,63,65,66) Increased expression of nCEH 
in animal models was also associated with reduced 
expression of CYP7A1 and CYP27A.(59) These 
cellular abnormalities, coupled with the decreased 
expression of ABC cholesterol exporters noted pre-
viously, result in the accumulation of toxic FC within 
hepatocytes.

Dietary Cholesterol and 
NASH

Human studies consistently support the association 
between cholesterol intake and the development of 
NASH or cirrhosis (Table 1). A nested case- control 
analysis of the multiethnic cohort, a large prospective 
study with over 215,000 older- adult participants in 
Hawaii and California, showed a positive association 
between dietary cholesterol intake and development 
of NAFLD with cirrhosis.(67) Another study, repre-
sentative of the U.S. population, reported that dietary 
cholesterol consumption (but not total fat consump-
tion) was significantly associated with the develop-
ment of cirrhosis from all etiologies of liver disease 
combined.(68)

Experimental animal models (e.g., mice, rats, rab-
bits, gerbils, pigs) also consistently demonstrate that 
the addition of dietary cholesterol leads to progres-
sion of liver disease to fibrosing steatohepatitis and 
cirrhosis (Table 2). These studies generally show that 
while dietary fat intake alone causes the development 
of only simple steatosis without substantial necroin-
flammation or fibrosis, the addition of dietary choles-
terol causes the progression from steatosis to NASH. 
Studies in some animal models, such as Ossabaw 
swine, showed that marked steatosis is not always 
necessary for the development of dietary cholesterol- 
induced ballooning degeneration, KC activation, and 
fibrosis.(69,70)

Genetic Polymorphisms 
Associated With NASH 
Are Related to Hepatic 
Cholesterol Metabolism

Many human genetic polymorphisms that have 
been strongly linked to NAFLD, NASH, and NASH- 
related cirrhosis appear to be related to hepatic cho-
lesterol metabolism, although some clearly affect other 
lipids too. The most common and well- described is 
the patatin- like phospholipase domain- containing 
protein 3 (PNPLA3) I148M variant, which causes 
impairment of very low density lipoprotein (VLDL) 
secretion, LD remodeling, and hydrolase activity for 
triglycerides and retinyl esters.(71,72) Homozygous car-
ries of the PNPLA3 I148M variant have a greater risk 
of progressive steatohepatitis and fibrosis.(73) Carriers 
of the TM6SF2 (transmembrane 6 superfamily 
member 2) E167K variant have impaired hepatic 
VLDL secretion, and are at higher risk for liver dis-
ease; however, they are at lower risk of cardiovascular 
events.(74) ApoB mutations, characteristic of familial 
hypobetalipoproteinemia, impair hepatic secretion of 
VLDL particles, which results in worsening steatosis, 
steatohepatitis, and cirrhosis.(75) Polymorphisms in 
farnesyl diphosphate farnesyl transferase 1 (FDFT1), 
encoding squalene synthase, the first enzyme in the 
sterol biosynthesis pathway, have been associated with 
NAFLD activity scores and fibrosis.(76) Patients with 
mutations in the LIPA (lysosomal acid lipase) gene, 
encoding lysosomal acid lipase, accumulate CEs and 
triglycerides in the liver, with progression to hepatic 
steatosis, fibrosis, and cirrhosis.(77) Nongenetic reduc-
tions in lysosomal acid lipase activity have been identi-
fied in patients with NAFLD, with higher reductions 
in lysosomal acid lipase activity, resulting in wors-
ening disease.(78) Finally, a newly investigated pro-
tein, HSD17B13 (17β hydroxysteroid dehydrogenase 
13), a LD enzyme with retinal dehydrogenase activ-
ity that also plays a key role in cholesterol and fatty 
acid metabolism, was found to have 5.9- fold higher 
hepatic expression in patients with NASH compared 
with controls.(79) Although it is intriguing that these 
polymorphisms appear to affect hepatic cholesterol 
homeostasis directly or indirectly, it is important to 
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emphasize that some also affect other lipids and that 
the specific mechanisms by which each polymorphism 
causes NASH are complex and not fully elucidated.

Mechanisms of CASH 
Development

Cholesterol accumulation results in dysfunction of 
many organelles within hepatocytes and activation 
of other liver cells critical to fibrosing steatohepati-
tis, such as KCs and HSCs. The fluidity of a cell’s 
membranes, both the outer plasma membrane as well 
as membranes of internal organelles, is dependent 
on a precise ratio of FC to phospholipids, as well 
as the saturation status of the phospholipids.(80) FC 
accumulation within a cell membrane causes liquid- 
ordered rafts to become too rigid, which affects trans-
membrane proteins that require a degree of fluidity 
in order to function properly.(80) Figure 4 summarizes 
the processes by which hepatic FC accumulation leads 
to hepatocyte dysfunction (FIG. 4A).

CHolesteRol anD eR stRess
The ER is responsible for a number of critical 

cellular functions, including folding and posttrans-
lational modification of proteins, calcium storage, 
lipid- membrane biosynthesis, drug metabolism, 
regulating surviving and cell death signals, and sig-
naling the production of cholesterol through Scap/
SREBP- 2.(33,34,81,82) Multiple cellular aberrations can 
lead to ER stress and impair the proper folding of 
proteins, including oxidative stress, calcium dysregu-
lation, hyperglycemia, inflammation, and hypercho-
lesterolemia.(83,84) Elevated FC/phospholipid ratio 
in the ER membrane impairs the action of sarco/
endoplasmic reticulum Ca2+- ATPase (SERCA) in 
mice, a pump that maintains high Ca2+ concentration 
in the ER lumen to facilitate protein folding (FIG. 
4B).(83- 86) Impaired functionality of SERCA results in 
decreased luminal calcium concentration, higher levels 
of unfolded proteins, and ER stress.(83- 86) Activation 
of the unfolded protein response (UPR) leads to up- 
regulation of key enzymes that alleviate ER stress by 
decreasing ER secretory load and enhancing protein 
folding. Conversely, in cases of chronic ER stress in 
mouse and human models, the UPR can actually 
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promote worsening steatosis, apoptosis, autophagy, or 
activation of the NOD- , LRR-  and pyrin domain- 
containing protein 3 (NLRP3) inflammasome caus-
ing interleukin (IL) 1β production, pyroptosis, and 

hepatic inflammation.(83,87,88) In this way, ER stress 
leads to a positive feedback loop of worsening steato-
sis, ER stress, cell death, and inflammation character-
istic of NASH.
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CHolesteRol in 
mitoCHonDRial stRess

The mitochondria membrane contains little cho-
lesterol compared with other cellular membranes and 
is more susceptible to slight alterations in cholesterol 
membrane content.(89,90) Steroidogenic acute regu-
latory proteins transfer cholesterol from late endo-
some/lysosome (LE/LY) to the mitochondria for 
steroid synthesis in steroidogenic cells, and demon-
strate a 7- 15- fold increase in expression in patients 
with steatosis and NASH.(66,91) Increased deliv-
ery of cholesterol to the mitochondrial membrane 
results in dysfunction of membrane proteins such as 
2- oxoglutarate (2- Oxo)(90) (FIG. 4C). When mito-
chondrial cholesterol content increases in mice and 
human HepG2 cells, the fluidity of the mitochon-
drial membrane is reduced, impairing the function 
of 2- Oxo and depleting the mitochondrial gluta-
thione pool.(90,92) This sensitizes the hepatocyte to 
tumor necrosis factor α (TNF- α), promoting oxida-
tive stress, lipid peroxidation, increased mitochondrial 
membrane permeability with cytochrome c release, 
and signaling for necrosis.(92) Indeed, studies evaluat-
ing elevated cholesterol content in mice and human 

HepG2 cells in mitochondria demonstrate experi-
mental NASH.(90,92)

FoRmation oF toXiC 
oXysteRols

Formation of oxysterols within the cell occurs 
either through auto- oxidation of cholesterol in the 
setting of oxidative stress, or through hydroxylation by 
a number of cytochrome P450 monooxygenases, typi-
cally as an intermediary in the formation of CEs, bile 
acids, or steroid hormones.(93,94) Oxysterols are known 
to be potent signaling molecules, binding to LXRα 
in human hepatocytes and promoting reverse choles-
terol transport, or binding to SREBP- 2 and inhib-
iting de novo cholesterol synthesis.(36,44,95- 98) Studies 
looking at both animal models and humans with 
biopsy- proven NASH show increased levels of oxys-
terols within the liver and subsequent liver damage, 
inflammation, and fibrosis.(99- 101) One species of oxys-
terol, 25- hydroxycholesterol, has been demonstrated 
to enhance inflammatory signaling in rat hepatocytes 
through nuclear factor kappa B (NF- κB) activation, 
a key proinflammatory regulator; however, its sulfate 
derivative, 25- hydoxycholesterol- 3- sulfate, actually 

Fig. 4. Mechanisms of organelle dysfunction in cholesterol overload. (A) Overview of organelle cholesterol loading. Cholesterol entering 
the hepatocyte through LDL particles binds to the LDLR receptors and undergoes receptor- mediated endocytosis. That cholesterol is 
then trafficked through the late endosome and lysosome, and ultimately is transferred to different cellular organelles. NPC1 mediates 
transfer of cholesterol to lipid droplets, where it is stored; however, FC can form cholesterol crystals within the LDs. StAR/MLN64 
transfers cholesterol from the lysosome to the mitochondria (or StAR can transfer cholesterol from the LD to the mitochondria), where 
it is typically used for synthesis of steroidogenic signaling molecules; however, it can also be deposited into the mitochondrial membrane 
and interfere with the function of 2- Oxo. NPC1/2 mediates transfer of cholesterol from the lysosome to the ER, where high cholesterol 
membrane content causes disruption of the calcium pump SERCA, decreasing the concentration of calcium in the endoplasmic reticulum 
lumen. FC in the cell can react with ROS through CYP450 enzymes and form oxysterols, which increases nuclear NF- κB signaling. (B) 
ER stress. Excess cholesterol in the ER leads to dysfunction of SERCA, lowers the luminal calcium concentration (stimulating the UPR), 
activation of NLRP3 inflammasome, and pyroptosis. (C) Mitochondrial dysfunction. Cholesterol loading in the mitochondrial interferes 
with 2- Oxo function, which depletes the mitochondrial glutathione pool, resulting in ROS generation, lipid peroxidation, release of 
cytochrome C, and trigger of apoptosis. Excessive ROS generation for cholesterol overload leads to the generation of toxic oxysterols, 
which triggers inflammatory signaling through NF- κB. (D) LD cholesterol crystallization and activation of inflammatory cells. Excessive 
FC in hepatocyte LDs leads to the formation of cholesterol crystal in the periphery of the LDs. LD cholesterol deposition results in 
activation of the NLRP3 inflammasome, which results in release of IL- 1β, causing pyroptosis or necrosis. Processing of these cholesterol 
crystals by activated KC in crown- like structures causes release of proinflammatory signaling molecules, specifically IL- 1B, IL- 18, TGF- β, 
and MCP1, which recruits immune cells to the liver and transforms HSCs into myofibroblasts. Myofibroblasts elaborate collagen, which 
deposits in the liver and leads to fibrosis and cirrhosis. (E) The TAZ Pathway. FC accumulated on the plasma membrane gets internalized 
by ASTER B/C, which activates sAC. Elevations in cAMP levels results in phosphorylation of IP3R through PKA and causes release 
of Ca from the ER lumen. Elevated cytosolic Ca levels activates RhoA, which inhibits LATS1/2 through phosphorylation. LATS1/2 is 
unable to phosphorylate TAZ, and the dephosphorylated TAZ (active form) translocates to the nucleus to induce transcription of Ihh. Ihh 
is secreted out of the hepatocyte and is then able to induce profibrotic mRNA in HSCs, resulting in hepatic fibrosis. Abbreviations: AMP, 
adenosine monophosphate; ATP, adenosine triphosphate; Ca, calcium; cAMP, cyclic adenosine monophosphate; Cyt C, cytochrome C; 
IP3R, inositol 1,4,5- trisphosphate receptor; GSH, glutathione; LATS 1/2, large tumor suppressor 1/2; MCP1, monocyte chemoattractant 
protein- 1; MLN64, metastatic lymph node 64 protein; NPC1, Niemann- Pick type C1; PKA, protein kinase A; PO4- , phosphate; RhoA, 
ras homolog family member A; sAC, soluble adenylyl cyclase; and StAR, steroidogenic acute regulatory protein.
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has anti- inflammatory properties.(102) In the rat mito-
chondria, oxysterols can promote signaling for cellular 
apoptosis.(101) These findings suggest a complex role 
of oxysterols in the pathogenesis of NASH with room 
for further experimentation.

CHolesteRol aCtiVates KCs 
anD HsCs

In atherosclerotic plaques, cholesterol accumulation 
within macrophages results in the formation of foamy 
cells, and has been implicated as a prominent com-
ponent of the inflammatory response found in these 
plaques.(103- 105) In much the same way, mouse mod-
els demonstrate cholesterol accumulation within KCs, 
the resident macrophages in the liver, and appear to 
contribute to the inflammation that is characteristic 
of NASH.(106) As KCs in both mice and humans are 
not able to synthesize cholesterol de novo, they acquire 
cholesterol through uptake from the circulation, 
through LDLR- mediated endocytosis or scavenger 
receptors that bind oxLDL particles, or from process-
ing remnant LDs of dead steatotic hepatocytes.(107- 109) 
Uptake of oxLDL through the scavenger receptors, 
CD36 or SR- A, results in trafficking of oxLDL to 
the lysosome, where it gets trapped and cannot be 
exported out of the lysosome.(107,108,110) Unlike the 
LDLR pathway for cholesterol accumulation, the 
scavenger receptor pathway does not possess a neg-
ative feedback loop, leading to rapid accumulation 
of oxLDL in KC lysosomes and triggering hepatic 
inflammation.(107,108,110,111) Experiments in mouse 
models with scavenger receptor knockout/inhibition, 
or alleviation of lysosomal cholesterol accumulation, 
have shown improvement in the hepatic inflammation 
characteristic of NASH.(112- 114)

HSCs, a type of nonparenchymal hepatic cell 
located in the space of Disse, are activated by fibro-
genic cytokines elaborated by KCs, specifically trans-
forming growth factor β (TGF- β) and TNF- α, 
resulting in transformation into myofibroblasts, which 
cause hepatic fibrosis.(115) Similar to KCs, experiments 
in mice show FC accumulates in HSCs by uptake 
from scavenger receptors, specifically lectin- like oxi-
dized LDL receptor- 1 (LOX- 1), which directly acti-
vates HSCs via signaling through toll- like receptor 4 
(TLR- 4).(116,117) The LOX- 1 IVS4- 14 AG polymor-
phism, encoding a nontruncated splice isoform that 
was previously shown to confer higher cardiovascular 

disease (CVD) risk in homozygotes, was associated 
with increased severity of NASH in a study of 40 
patients with biopsy- proven NASH and 40 matched 
controls.(118) Increased accumulation of FC leads to 
decreased lysosomal degradation of TLR- 4, and sen-
sitizes the cell to TGF- β signaling.(116)

CHolesteRol 
CRystalliZation

The hepatocyte LD represents one of the body’s 
main storage sites for excess cholesterol, which is 
transferred to the LD membrane most likely through 
direct membrane contact sites with other organelles, 
including the ER, mitochondria, peroxisomes, and 
LE/LY. FC transferred to the LD membrane can be 
esterified to CE for “safe” storage. However, a high 
FC concentration can be reached in the LD mem-
brane during this process. As the cholesterol con-
centration in the membrane increases, it eventually 
exceeds the ability of phospholipid head groups to 
cover all the cholesterol molecules, and excess mol-
ecules precipitate adjacent to the membrane, form-
ing cholesterol monohydrate crystals (FIG. 4D). LD 
cholesterol crystals have been observed in steatotic 
hepatocytes in both patients with NASH and animal 
models of NASH.(28,105,109) In patients with biopsy- 
proven NAFLD, hepatocyte LD cholesterol crystals 
were observed almost exclusively in patients with 
NASH and not in patients with simple steatosis, sug-
gesting that these cholesterol crystals are important in 
pathogenesis rather than innocent bystanders.(28)

Cholesterol crystals in subintimal atheroscle-
rotic plaque macrophages are known to activate the 
NLRP3 inflammasome in humans and mice, medi-
ating IL- 1β and IL- 18 release through the caspase 1 
pathway.(119,120) It is plausible that cholesterol crys-
tallization within hepatocyte LD also activates the 
NLRP3 inflammasome.(121) In mouse hepatocytes, 
NLRP3 activation causes pyroptosis, a form of pro-
grammed cell death marked by NLRP3 activation of 
caspase 1, DNA damage, and cell membrane pore for-
mation, causing cell swelling and death.(122)

KCs that process dead hepatocytes with choles-
terol crystals become exposed to these crystals and 
their proinflammatory effects. Following pyroptosis or 
necrosis of steatotic hepatocytes, their remnant LDs 
are encircled by KCs and form characteristic “crown- 
like structures” (CLSs), which secrete lysosomal 
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enzymes involved in the extracellular processing of 
LDs.(123- 125) Processing of the LDs by lysosomal acid 
lipase results in the hydrolysis of CE to FC and fur-
ther production of cholesterol crystals.(123,124) KCs 
that are exposed to cholesterol crystals are trans-
formed into activated lipid- laden foam cells(123,124) 
through pathways that likely include activation of the 
NLRP3 inflammasome.(119,120,122- 124) Given the cen-
tral role of the NLRP3 inflammasome, it is no sur-
prise that inhibition of this inflammasome in genetic 
and diet- induced mouse models of NASH resulted in 
decreased levels of inflammation and fibrosis.(126)

taZ patHWay
A pathway has been identified recently that directly 

connects hepatocyte FC loading with hepatic fibro-
sis through HSC activation.(127) In 2016, Wang et 
al. showed that the transcription regulator TAZ was 
higher in both mouse models and patients with NASH; 
silencing of TAZ prevented or reversed features of 
steatohepatitis, but not steatosis; and expression of 
TAZ in models of steatosis induced steatohepati-
tis.(127) In most hepatocytes, TAZ is phosphorylated 
and in the inactive cytoplasmic state. However, mod-
els of NASH show increased dephosphorylation of 
TAZ to the active form, translocation to the nucleus, 
and transcription of target genes.(127) One of the tar-
get gene induced by TAZ is Indian hedgehog (Ihh), 
which can be secreted from hepatocytes and induces 
profibrotic genes in HSCs.(127) Wang et al. showed 
that silencing of TAZ in NASH models decreased 
gene expression of hepatocyte Ihh and subsequent 
profibrotic HSC mRNA.(127) A follow- up study pub-
lished in 2020 showed that the process of TAZ acti-
vation is initiated by hepatocyte FC, which blocks 
proteosomal TAZ degradation through induction of 
soluble adenylyl cyclase and resulting Ca release from 
the ER.(128) This pathway (FIG. 4E) provides a direct 
link between increased hepatocyte FC levels and fea-
tures of NASH.

Ezetimibe and Statins in 
NASH

Cholesterol- lowering medications (such as statins 
and ezetimibe) are very common in patients with 

NAFLD/NASH due to the high prevalence of hyper-
cholesterolemia, diabetes, and CVD. In addition 
to their proven cardiovascular benefits, statins and 
ezetimibe also appear to have beneficial effects on 
NAFLD/NASH.(129- 131) Table 3 summarizes stud-
ies that evaluated the effects of cholesterol- lowering 
medications on NAFLD/NASH, identified through a 
comprehensive review of the literature. Multiple small 
prospective studies in patients with either NAFLD 
or NASH assessed the effect of ezetimibe on steato-
sis, inflammation, and fibrosis. Although these stud-
ies have shown benefit in biochemical, metabolic, 
and histologic outcomes from ezetimibe therapy, the 
small size and relatively short follow- up of these stud-
ies limit their interpretation.(132- 136) A meta- analysis 
performed in 2017 encompassing six studies and 273 
patients with NAFLD or NASH suggested that eze-
timibe improved serum liver enzymes, hepatocyte 
steatosis and ballooning, but had no effect on inflam-
mation or fibrosis.(137)

Despite concerns about statin- induced hepa-
totoxicity, studies reported very rare incidence of 
statin- related adverse events in patients with liver dis-
ease.(138,139) Post hoc analysis of three large random-
ized, controlled, trials designed to evaluate the effect 
of statins on CVD, consisting of 11,587 patients, 
including 1,844 with elevated aminotransferases, 
demonstrated that statins resulted in improvement in 
serum aminotransferase levels and ultrasonographic 
steatosis.(129,140,141) In 2015, a multicenter cohort 
study consisting of 1,201 European patients who 
underwent liver biopsy for suspected NASH showed 
that the 107 patients who were taking statins had a 
protective effect from steatosis, inflammation, and 
NASH in a dose- dependent manner.(142) A multi-
center, Italian cross- sectional study of 346 patients 
with diabetes with biopsy- proven NAFLD, con-
firmed that statins were independently associated 
with reduced odds of NASH and significant fibro-
sis.(143) Multiple small prospective trials using ator-
vastatin and rosuvastatin demonstrated improvement 
in biochemical, radiological, and histological features 
of NAFLD and NASH.(130,144,145) A systemic review 
of 121,058 patients with chronic liver disease showed 
that statins reduced the risk of portal hypertension, 
progression to cirrhosis or decompensated cirrhosis, 
and mortality.(131)

Meta- analyses of randomized controlled tri-
als, including very large numbers of participants, 
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demonstrated that statins resulted in a slightly 
increased risk of development of diabetes,(146,147) but 
the risk was low both in absolute terms and when 
compared with the reduction in coronary events. 
Specifically, treatment of 255 patients with statins 
for 4  years resulted in one extra case of diabetes (or 
approximately one case of diabetes per 1,000 patient- 
years). In observational studies, statin- treated patients 
had increased hepatic de novo lipogenesis through 
activation of SREBP- 1c and up- regulation of genes 
involved in fatty acid and triglyceride metabolism, 
suggesting that activation of these genes contributes 
to insulin resistance and diabetes.(148) Because insulin 
resistance and diabetes are important risk factors for 
NASH, these findings raise some concern about the 
role of statins as potential NASH pharmacotherapies.

In summary, this evidence suggests beneficial 
effect of statins on steatosis, inflammation, fibrosis, 
portal hypertension and cirrhosis, and confirms the 
safety of statins for the treatment of dyslipidemia in 
patients with NAFLD and NASH as recommended 
by the American Association for the Study of Liver 
Diseases.(1) However, large, randomized, placebo- 
controlled trials of statins in NASH adequately 
powered for histological outcomes are lacking. Such 
studies are desperately needed but very difficult to 
design, as it may be considered unethical to random-
ize patients with NASH to placebo, given that most 
would fulfill criteria for being on a statin for cardio-
vascular reasons.

Conclusions
NASH is rapidly rising in prevalence world-

wide and currently has no approved pharmacological 
treatments. In the near future, the number of liver 
transplantations for NASH will surpass all other 
indications for liver transplantation. The evidence 
presented in this review strongly supports the role of 
cholesterol in causing “cholesterol- associated steato-
hepatitis” (CASH) and should serve to focus efforts 
on targeting cholesterol lowering as a therapeutic 
option. This strategy has multiple advantages. First, 
statins are widely available, inexpensive medications 
with a proven track record of safety. Second, statins are 
proven to reduce cardiovascular mortality, which is the 
number- one cause of death in patients with NASH, 
and may have even greater cardiovascular benefits 

in patients with NASH.(129) Therefore, treatment of 
patients with NASH with statins would potentially 
simultaneously ameliorate both cardiovascular mortal-
ity as well as liver- related complications (e.g., cirrhosis 
and portal hypertension) and mortality. Randomized 
controlled trials of statins in patients with NASH or 
cirrhosis that are under way are eagerly awaited, while 
clearly more such studies are urgently needed.
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