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Role of Cholesterol-Associated
Steatohepatitis in the Development of
NASH

Christian L. Horn

E 2-4

The rising prevalence of nonalcoholic fatty liver disease (NAFLD) and NAFLD-related cirrhosis in the United States
and globally highlights the need to better understand the mechanisms causing progression of hepatic steatosis to fi-
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brosing steatohepatitis and cirrhosis in a small proportion of patients with NAFLD. Accumulating evidence suggests
that lipotoxicity mediated by hepatic free cholesterol (FC) overload is a mechanistic driver for necroinflammation and
fibrosis, characteristic of nonalcoholic steatohepatitis (NASH), in many animal models and also in some patients with
NASH. Diet, lifestyle, obesity, key genetic polymorphisms, and hyperinsulinemia secondary to insulin resistance are
pivotal drivers leading to aberrant cholesterol signaling, which leads to accumulation of FC within hepatocytes. FC
overload in hepatocytes can lead to ER stress, mitochondrial dysfunction, development of toxic oxysterols, and choles-
terol crystallization in lipid droplets, which in turn lead to hepatocyte apoptosis, necrosis, or pyroptosis. Activation of
Kupffer cells and hepatic stellate cells by hepatocyte signaling and cholesterol loading contributes to this inflammation
and leads to hepatic fibrosis. Cholesterol accumulation in hepatocytes can be readily prevented or reversed by statins.
Observational studies suggest that use of statins in NASH not only decreases the substantially increased cardiovascular
risk, but may ameliorate liver pathology. Conclusion: Hepatic FC loading may result in cholesterol-associated steatohep-
atitis and play an important role in the development and progression of NASH. Statins appear to provide significant
benefit in preventing progression to NASH and NASH-cirrhosis. Randomized controlled trials are needed to demon-
strate whether statins or statin/ezetimibe combination can effectively reverse steatohepatitis and liver fibrosis in patients
with NASH. (Hepatology Communications 2022;6:12-35).

onalcoholic fatty liver disease (NAFLD)
encompasses a wide histological spectrum
of disease ranging from simple steatosis
and nonalcoholic steatohepatitis (NASH) to cirrho-
sis and hepatocellular carcinoma.! It is the most
common cause of chronic liver disease worldwide,
with a prevalence estimated to be 24%-26%.%% The
prevalence of NASH in North America is estimated

reported in the Middle East (31.7%) and South
America (30.4%).(3) About 41% of patients with
NASH experience progression of fibrosis with an
incidence of stage 3 or 4 fibrosis of 68 per 1,000
person-years.>* NAFLD/NASH is currently the
second leading indication for liver transplantation
and is expected to become the number-one indica-
tion in the next few years, with excellent long-term

1 (1-3,5,6)

to be about 24.1%, with the highest prevalence posttransplant surviva
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Many risk factors for developing hepatic steato-
sis have been identified including the metabolic
syndrome (MetS), obesity, insulin resistance with
hyperinsulinemia, personal or family history of type
2 diabetes mellitus (T2DM), and dyslipidemia.’
Of these risk factors, T2DM and insulin resistance
are very common in NAFLD and may play a pivotal
role in NAFLD/NASH development.®” " Despite
these known risk factors, we do not yet know the
causative factor(s) without which development and
progression of NASH cannot possibly occur in cer-
tain patients. In this review, we examine the data
supporting the hypothesis that hepatic cholesterol is
a key pathogenetic factor driving the development
of NASH at least in a subset of patients, and pro-
pose the term cholesterol-associated steatohepatitis
(CASH) to describe this mechanistic pathway by
which hepatic cholesterol may result in the devel-
opment of steatohepatitis. These considerations are
critical, because unless a causative agent is uncov-
ered, it is unlikely that a highly effective treatment
of NASH will ever be identified. Although there is
mounting evidence that cholesterol may also lead
to hepatic carcinogenesis, we will not focus on the
association between cholesterol and hepatocellular
carcinoma in this review.

HORNETAL.

Pathogenesis of NASH:
Conceptual Models and the
Role of Cholesterol

Historically, the two-hit hypothesis proposed a
stepwise progression from normal liver to hepatic
steatosis and then to NASH."'? This theory pos-
tulates that insulin resistance is the “first hit,” which
promotes accumulation of fatty acids in the liver,
leading to steatosis. 1 Hyperinsulinemia results in
increased lipolysis from peripheral adipose tissue and
altered hepatic gene transcription, which promotes
free fatty acid uptake and de movo lipogenesis. ">
Oxidative stress is the “second hit,” resulting from
increased oxidation of fatty acids, and causing reactive
oxygen species (ROS) formation, lipid peroxidation,
DNA damage, mitochondrial dysfunction, and release
of proinflammatory cytokines.’®'” These cellular
mechanisms result in hepatocyte damage, inflamma-
tion, and fibrosis, characteristic of steatohepatitis.(16’17)

More recently, a “multiple parallel hits” hypoth-
esis has been proposed, in which multiple cellu-
lar mechanisms, working simultaneously to cause a

»

“perfect storm,” result in hepatic inflammation and
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progression to NASH.®® Cellular mechanisms that
could be altered and lead to inflammation include
abnormal lipid metabolism, mitochondrial oxidative
injury, endoplasmic reticulum (ER) stress, genetic
polymorphisms, altered immune responses, and gut
microbiome dysbiosis."®2% It is postulated that the
accumulation of lipotoxic lipids within the liver, which
interact with pro-inflammatory signals, causes these
cellular abnormalities, which leads to inflammation
and fibrosis. " Although triglycerides are the most
common lipids in the liver by far, it is likely that they
represent a “safe” storage molecule for fatty acids.*?
Instead, it is the accumulation of other lipotoxic lip-
ids, such as cholesterol (and potentially free fatty
acids, diacylglycerol, ceramides, and others), which
are postulated to result in cellular dysfunction.(21’23’24)
Cholesterol has a relatively “safe” storage option (i.e.,
its esterification to cholesterol esters [CEs]); however,
hepatic free (i.e., unesterified) cholesterol is highly
toxic to multiple cellular processes and organelles
even if only slightly increased.® Thus, we propose
that in a subset of patients with NASH, hepatic cho-
lesterol accumulation results in the development of
cholesterol-associated steatohepatitis (CASH) and is
the main driver of the necroinflammation and fibro-
sis causing NASH, while dietary, genetic, and lifestyle
co-factors either lead to the accumulation of hepatic
cholesterol or interact which hepatic cholesterol to

promote NASH, as shown in Fig. 1.

Hepatic Cholesterol
Metabolism

The liver is the most important organ that controls
body cholesterol homeostasis. In the nonpathologic
state, the mouse liver has a relatively low cholesterol
concentration (132 mg/kg), but it has a high flow of
sterols through the liver every day, consistent with its
role in lipoprotein and bile acid synthesis and homeo-
stasis (143 mg/kg/day).(%) When the sum total of the
pathways involved in synthesis and uptake of cho-
lesterol (FIG. 2A) exceeds the pathways that lead to
removal of cholesterol (FIG. 2B), cholesterol accumu-
lates in hepatocytes.?”

A critical component of the CASH hypothesis is
that the liver (not adipose tissue) is the body’s storage
site for excess cholesterol. Excess cholesterol is stored
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FIG. 1. Model of the CASH hypothesis. In the CASH model,
hepatic cholesterol accumulation is the main driver of cellular
derangement, causing NASH in a subset of patients, whereas dietary,
genetic, and lifestyle co-factors either lead to the accumulation
of hepatic cholesterol (yellow arrows) or interact which hepatic
cholesterol to promote CASH (blue arrows). Abbreviations: FFA,
free fatty acids; HSD17B13, 17p hydroxysteroid dehydrogenase
13; LIPA, lysosomal acid lipase; and TM6SF2, transmembrane 6

superfamily member 2.

in the liver within hepatocyte lipid droplets (LDs) as
CEs.?® Once previously believed to be inert storage
vessels, LDs have now been recognized as metabol-
ically active organelles within cells that serve a wide
variety of functions. LDs are derived from the ER and
consist of a core of neutral lipids (CEs and triglycer-
ide) that are surrounded by a phospholipid monolayer,
studded with a diverse array of proteins.(29’30) The
phospholipid monolayer contains FC, which affects
LD membrane properties, including surface and line
tension, size, and interaction with other LDs?30

(FIG. 2C).

REGULATION OF CHOLESTEROL
HOMEOSTASIS

Cholesterol homeostasis is tightly regulated by
a number of nuclear transcription factors, three of
which have also been linked to NAFLD pathogen-
esis: sterol regulatory element binding protein-2
(SREBP-2), farnesoid X receptor (FXR), and liver X
receptor (LXR) (FIG. 3).

SREBPs are a family of membrane-bound transcrip-
tion factors that sense membrane cholesterol and fatty
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FIG. 2. Cholesterol trafficking through the hepatocyte. (A) Cholesterol uptake and synthesis. Dietary cholesterol is absorbed in the jejunal
mucosa through NPC1L1, incorporated into chylomicrons (CMs), and reaches the liver in CM remnants. CM remnants are taken up by the
liver through interaction of the apoE protein on the CM remnant and LDLR on hepatocytes, which also binds to circulating LDL particles
through interaction with apoB-100 on the LDL surface. After binding to the LDLR, the complex undergoes receptor-mediated endocytosis,
processing through the late endosome/lysosome compartment, and transport into the metabolically active pool of cholesterol in the cytosol
through NPC1. CE taken from HDL particles are selectively transported into the cytosol through SR-B1, followed by hydrolysis through
nCEH to join the metabolically active pool of cholesterol in the cytosol. Cholesterol can also be taken up from bile through NPC1L1 on
the canalicular membrane of hepatocytes, when cells are deprived of cholesterol. Finally, cholesterol can also be synthesized de novo through
the HMGCoAR, which is tightly regulated by SREBP-2, the principal transcriptional activator of HMGCoAR. (B) Cholesterol secretion
and excretion. Transport of cholesterol out of the cell is performed primarily through members of a superfamily of ABC transporters that use
ATP to transport lipids across membranes. ABCA1 is a transmembrane protein present on the basolateral plasma membrane of hepatocytes
that removes lipids from the cell membrane to an extracellular acceptor apolipoprotein ApoA-I. ABCA1 interacts with lipid-free apoA-1
to generate nascent HDL particles, promoting cholesterol efflux from the cell. On the canalicular membrane of hepatocytes, ABCGS5 and
ABCGS form a heterodimer that functions to excrete sterols into the bile. Cholesterol may also be secreted into the circulation in the form
of VLDL particles. Finally, cholesterol may be converted to bile acids and excreted into bile through BSEP, an ABC transporter (ABCB11)
located on the canalicular membrane of hepatocytes. In the classical pathway, the rate-limiting step for cholesterol conversion into bile acid is
the microsomal cytochrome P450 CYP7A1, which results in 7-hydroxycholesterol; however, alternative pathways include the mitochondrial
CYP27A enzyme and 25-hydroxylase enzyme, forming 27-hydroxycholesterol or 25-hydroxycholesterol, respectively. (C) Hepatocyte LD.
The LD membrane consists of a monolayer of phospholipids, and FC and is covered with proteins, including perilipins. The interior of the
LD consists of triglycerides and CEs. When the concentration of FC within the LD membrane exceeds the saturation threshold, FC can
precipitate as cholesterol crystals in the periphery of the LD. Abbreviations: apoA-1, apolipoprotein A-1; apoB-100, apolipoprotein B-100;
apoE, apolipoprotein E; BA, bile acid; CM, chylomicron; CoA, coenzyme A; NPC1, Niemann-Pick type C1.

LXRs are nuclear cholesterol sensors that are acti-

acid content and modulate the transcription of genes
vated by high intracellular oxysterols.*** Following

involved in cholesterol and fatty acid synthesis and

uptake.(3l’32) SREBP-1 is primarily involved in fatty
acid, triglyceride, and phospholipid pathways, whereas
SREBP-2 is involved in cholesterol metabolism.®*%
SREBP-2 is a resident of the ER, where it is bound to
SREBP cleavage activating protein (Scap).®” When
Scap senses cholesterol depletion, SREBP-2 is trans-
ported to the Golgi complex, where it is cleaved to
the active form and enters the nucleus to activate the
transcription of genes for cholesterol synthesis and
uptake, including 3-hydroxy-3-methylglutaryl coen-
zyme A reductase (HMGCoAR) and low-density
lipoprotein receptor (LDLR).%3¢)

FXR is a nuclear receptor that senses bile acids and
is extensively involved in bile acid, lipid, and glucose
homeostasis.*’>” In the liver, FXR up-regulates scaven-
ger receptor class B type 1 (SR-B1), resulting in increased
uptake of high-density lipoprotein (HDL) cholesterol
from the circulation, increases ATP-binding cassette
transporter (ABC) G5 and G8 (ABCGS5/G8) specifi-
cally in mice, and bile salt export pump (BSEP) synthesis,
resulting in biliary excretion of cholesterol and bile acids,
but also inhibits CYP7A1 preventing cholesterol conver-
sion to bile acids.*”***)) FXR also promotes removal of
triglycerides from hepatocytes by increasing f-oxidation
and decreasing lipogenesis. "~ In hepatic stellate cells
(HSC:s), FXR creates a quiescent and pro-apoptotic phe-

notype, which promotes liver fibrosis resolution.
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activation by oxysterols, LXRa forms a heterodi-
mer with retinoid X receptor.(44) LXRa results in
reverse cholesterol transport and hepatic cholesterol
metabolism by increasing the expression of macro-
phage ABCA1/G1, resulting in increased HDL lev-
els, and increasing hepatic, macrophage, and intestinal
ABCG5/G8, causing net cholesterol excretion from
the body, but also increases LDLR degradation on
hepatocytes.(%_so) In rodent models, LXR also induces
expression of CYP7A1, resulting in cholesterol conver-
sion to bile acids; however, this phenomenon is not seen
in humans.®" Additionally, duodenal Niemann-Pick
type C1 like 1 protein (NPC1L1) expression has been
shown to be negatively correlated with LXR expres-
sion, inhibiting intestinal cholesterol absorption, result-
ing in fecal excretion of cholesterol.®? LXRa agonists
in mice demonstrated reduced hepatic inflammation

and fibrosis by decreasing cholesterol-mediated acti-
vation of hepatic Kupfter cells (KCs) and HSCs.03%

CHOLESTEROL ESTERIFICATION

To prevent the toxic effects of FC within hepato-
cytes, FC is esterified to CE and stored in hepatocyte
LDs.®> One of the enzymes responsible for cholesterol
esterification in hepatocytes is acyl-CoA:cholesterol

acyltransferase enzyme 2 (ACAT2).°® ACAT2 is a
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FIG. 3. Regulation of cholesterol homeostasis: The nuclear receptors SREBP-2 (black arrows), FXR (orange arrows), and LXR (blue
arrows) are intimately involved in regulating cholesterol metabolism in a number of different mechanisms. The SREBP-2/Scap complex
senses cholesterol content in the ER, and when cholesterol levels are low, SREPB-2 disassociates with Scap, travels to the Golgi apparatus
where it is cleaved, and then promotes transcription of genes involved in cholesterol synthesis and uptake. FXR senses bile acids and
triggers the transcription of SR-B1 and ABCG5/8, but inhibits the activity of CYP7A1, preventing further bile acid formation. LXR
binds to oxysterols in the cell, and then, after combining with retinoid X receptor, up-regulates ABCA1, CYP7A1, and ABCG5/8
transcription, but down-regulates LDLR transcription. Abbreviations: BA, bile acid; and RXR, retinoid X receptor.

transmembrane protein found in the ER in the liver
but not in adipose tissue; it integrates newly formed
CEs into the ER membrane, which can either be
incorporated into apolig)oprotein B (ApoB) or bud off
to form LDs.?*3%°7%8) When FC is needed by the
hepatocyte, ACAT2 is down-regulated and neutral
cholesterol ester hydrolase (nCEH) hydrolyzes CE to
FC.(55’59)

Hepatic Cholesterol
Accumulation in NASH

In the setting of NAFLD, numerous derange-
ments to hepatic cholesterol homeostasis have been

identified, which lead to the accumulation of hepatic
cholesterol.®? In mice, both hyperinsulinemia and
inflammation lead to loss of the inhibitory effect
of elevated plasma cholesterol on Scap/SREBP-2,
resulting in hepatic cholesterol accumulation.®%
Increased levels of nuclear SREBP-2, HMGCoAR
messenger RNA (mRNA), HMGCoAR protein,
and HMGCoAR dephosphorylation, resulting in the
active form of the enzyme, have been demonstrated in
patients with NAFLD/NASH. %% Despite clevated
nuclear SREBP-2 levels, LDLR levels are actually
down-regulated in patients with NAFLD/NASH, but
an alternative hepatic scavenger receptor for oxidized
low density lipoprotein (oxLLDL) particles, CD36, is
increased relative to the severity of steatosis. (1000364
Export of cholesterol out of the cell is also decreased,
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with decreased mRNA levels of ABCA1, ABCGI1,
and ABCG5.0%

Typical  esterification/de-esterification  activity
in healthy individuals is determined by the relative
concentration of ACAT?2, while the concentration
of nCEH remains relatively constant.®> However,
in patients with NAFLD, there is a 6-fold higher
concentration of nCEH compared with healthy
controls.¢®636569)  Tncreased expression of nCEH
in animal models was also associated with reduced
expression of CYP7A1 and CYP27A.%” These
cellular abnormalities, coupled with the decreased
expression of ABC cholesterol exporters noted pre-
viously, result in the accumulation of toxic FC within
hepatocytes.

Dietary Cholesterol and
NASH

Human studies consistently support the association
between cholesterol intake and the development of
NASH or cirrhosis (Table 1). A nested case-control
analysis of the multiethnic cohort, a large prospective
study with over 215,000 older-adult participants in
Hawaii and California, showed a positive association
between dietary cholesterol intake and development
of NAFLD with cirrhosis.®”) Another study, repre-
sentative of the U.S. population, reported that dietary
cholesterol consumption (but not total fat consump-
tion) was significantly associated with the develop-
ment of cirrhosis from all etiologies of liver disease
combined.®®

Experimental animal models (e.g., mice, rats, rab-
bits, gerbils, pigs) also consistently demonstrate that
the addition of dietary cholesterol leads to progres-
sion of liver disease to fibrosing steatohepatitis and
cirrhosis (Table 2). These studies generally show that
while dietary fat intake alone causes the development
of only simple steatosis without substantial necroin-
flammation or fibrosis, the addition of dietary choles-
terol causes the progression from steatosis to NASH.
Studies in some animal models, such as Ossabaw
swine, showed that marked steatosis is not always
necessary for the development of dietary cholesterol-

induced ballooning degeneration, KC activation, and
fibrosis.**"%)
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Genetic Polymorphisms

Associated With NASH
Are Related to Hepatic
Cholesterol Metabolism

Many human genetic polymorphisms that have
been strongly linked to NAFLD, NASH, and NASH-
related cirrhosis appear to be related to hepatic cho-
lesterol metabolism, although some clearly affect other
lipids too. The most common and well-described is
the patatin-like phospholipase domain-containing
protein 3 (PNPLA3) 1148M variant, which causes
impairment of very low density lipoprotein (VLDL)
secretion, LD remodeling, and hydrolase activity for
triglycerides and retinyl esters. 7172 Homozygous car-
ries of the PNPLA3 1148M variant have a greater risk
of progressive steatohepatitis and fibrosis.”® Carriers
of the TM6SF2 (transmembrane 6 superfamily
member 2) E167K variant have impaired hepatic
VLDL secretion, and are at higher risk for liver dis-
ease; however, they are at lower risk of cardiovascular
events.? ApoB mutations, characteristic of familial
hypobetalipoproteinemia, impair hepatic secretion of
VLDL particles, which results in worsening steatosis,
steatohepatitis, and cirrhosis.” Polymorphisms in
farnesyl diphosphate farnesyl transferase 1 (FDFT1),
encoding squalene synthase, the first enzyme in the
sterol biosynthesis pathway, have been associated with
NAFLD activity scores and fibrosis.”® Patients with
mutations in the LIPA (lysosomal acid lipase) gene,
encoding lysosomal acid lipase, accumulate CEs and
triglycerides in the liver, with Frogression to hepatic
steatosis, fibrosis, and cirrhosis. M Nongenetic reduc-
tions in lysosomal acid lipase activity have been identi-
fied in patients with NAFLD, with higher reductions
in lysosomal acid lipase activity, resulting in wors-
ening discase.”® Finally, a newly investigated pro-
tein, HSD17B13 (17f hydroxysteroid dehydrogenase
13), a LD enzyme with retinal dehydrogenase activ-
ity that also plays a key role in cholesterol and fatty
acid metabolism, was found to have 5.9-fold higher
hepatic expression in patients with NASH compared
with controls.”” Although it is intriguing that these
polymorphisms appear to affect hepatic cholesterol
homeostasis directly or indirectly, it is important to
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emphasize that some also affect other lipids and that
the specific mechanisms by which each polymorphism
causes NASH are complex and not fully elucidated.

Mechanisms of CASH

Development

Cholesterol accumulation results in dysfunction of
many organelles within hepatocytes and activation
of other liver cells critical to fibrosing steatohepati-
tis, such as KCs and HSCs. The fluidity of a cell’s
membranes, both the outer plasma membrane as well
as membranes of internal organelles, is dependent
on a precise ratio of FC to phospholipids, as well
as the saturation status of the phospholipids.®” FC
accumulation within a cell membrane causes liquid-
ordered rafts to become too rigid, which affects trans-
membrane proteins that require a degree of fluidity
in order to function properly.®” Figure 4 summarizes
the processes by which hepatic FC accumulation leads
to hepatocyte dysfunction (FIG. 4A).

CHOLESTEROL AND ER STRESS

The ER is responsible for a number of critical
cellular functions, including folding and posttrans-
lational modification of proteins, calcium storage,
lipid-membrane  biosynthesis, drug metabolism,
regulating surviving and cell death signals, and sig-
naling the production of cholesterol through Scap/
SREBP-2.(3%3481,82) Multiple cellular aberrations can
lead to ER stress and impair the proper folding of
proteins, including oxidative stress, calcium dysregu-
lation, hyperglycemia, inflammation, and hypercho-
lesterolemia.®**¥  Elevated FC/phospholipid ratio
in the ER membrane impairs the action of sarco/
endoplasmic reticulum Ca?*-ATPase (SERCA) in
mice, a pump that maintains high Ca®* concentration
in the ER lumen to facilitate protein folding (FIG.
4B).(83-80) Impaired functionality of SERCA results in
decreased luminal calcium concentration, higher levels
of unfolded proteins, and ER stress.®3%
of the unfolded protein response (UPR) leads to up-
regulation of key enzymes that alleviate ER stress by
decreasing ER secretory load and enhancing protein
tolding. Conversely, in cases of chronic ER stress in
mouse and human models, the UPR can actually

) Activation
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promote worsening steatosis, apoptosis, autophagy, or  hepatic inflammation.®*%% In this way, ER stress
activation of the NOD-, LRR- and pyrin domain- leads to a positive feedback loop of worsening steato-
containing protein 3 (NLRP3) inflammasome caus- sis, ER stress, cell death, and inflammation character-

ing interleukin (IL) 1f production, pyroptosis, and istic of NASH.
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FIG. 4. Mechanisms of organelle dysfunction in cholesterol overload. (A) Overview of organelle cholesterol loading. Cholesterol entering
the hepatocyte through LDL particles binds to the LDLR receptors and undergoes receptor-mediated endocytosis. That cholesterol is
then trafficked through the late endosome and lysosome, and ultimately is transferred to different cellular organelles. NPC1 mediates
transfer of cholesterol to lipid droplets, where it is stored; however, FC can form cholesterol crystals within the LDs. StAR/MLN64
transfers cholesterol from the lysosome to the mitochondria (or StAR can transfer cholesterol from the LD to the mitochondria), where
it is typically used for synthesis of steroidogenic signaling molecules; however, it can also be deposited into the mitochondrial membrane
and interfere with the function of 2-Oxo. NPC1/2 mediates transfer of cholesterol from the lysosome to the ER, where high cholesterol
membrane content causes disruption of the calcium pump SERCA, decreasing the concentration of calcium in the endoplasmic reticulum
lumen. FC in the cell can react with ROS through CYP450 enzymes and form oxysterols, which increases nuclear NF-kB signaling. (B)
ER stress. Excess cholesterol in the ER leads to dysfunction of SERCA, lowers the luminal calcium concentration (stimulating the UPR),
activation of NLRP3 inflammasome, and pyroptosis. (C) Mitochondrial dysfunction. Cholesterol loading in the mitochondrial interferes
with 2-Oxo function, which depletes the mitochondrial glutathione pool, resulting in ROS generation, lipid peroxidation, release of
cytochrome C, and trigger of apoptosis. Excessive ROS generation for cholesterol overload leads to the generation of toxic oxysterols,
which triggers inflammatory signaling through NF-kB. (D) LD cholesterol crystallization and activation of inflammatory cells. Excessive
FC in hepatocyte LDs leads to the formation of cholesterol crystal in the periphery of the LDs. LD cholesterol deposition results in
activation of the NLRP3 inflammasome, which results in release of IL-1p, causing pyroptosis or necrosis. Processing of these cholesterol
crystals by activated KC in crown-like structures causes release of proinflammatory signaling molecules, specifically IL-1B,IL-18, TGF-§,
and MCP1, which recruits immune cells to the liver and transforms HSCs into myofibroblasts. Myofibroblasts elaborate collagen, which
deposits in the liver and leads to fibrosis and cirrhosis. (E) The TAZ Pathway. FC accumulated on the plasma membrane gets internalized
by ASTER B/C, which activates sAC. Elevations in cAMP levels results in phosphorylation of IP3R through PKA and causes release
of Ca from the ER lumen. Elevated cytosolic Ca levels activates RhoA, which inhibits LAT'S1/2 through phosphorylation. LAT'S1/2 is
unable to phosphorylate TAZ, and the dephosphorylated TAZ (active form) translocates to the nucleus to induce transcription of Ihh.Thh
is secreted out of the hepatocyte and is then able to induce profibrotic mRNA in HSCs, resulting in hepatic fibrosis. Abbreviations: AMP,
adenosine monophosphate; ATP, adenosine triphosphate; Ca, calcium; cAMP, cyclic adenosine monophosphate; Cyt C, cytochrome C;
IP3R, inositol 1,4,5-trisphosphate receptor; GSH, glutathione; LATS 1/2, large tumor suppressor 1/2; MCP1, monocyte chemoattractant
protein-1; MLN64, metastatic lymph node 64 protein; NPC1, Niemann-Pick type C1; PKA, protein kinase A; PO*, phosphate; RhoA,
ras homolog family member A; sAC, soluble adenylyl cyclase; and StAR, steroidogenic acute regulatory protein.

CHOLESTEROL IN
MITOCHONDRIAL STRESS

The mitochondria membrane contains little cho-
lesterol compared with other cellular membranes and
is more susceptible to slight alterations in cholesterol

HepG2 cells in mitochondria demonstrate experi-

mental NASH. %%

FORMATION OF TOXIC
OXYSTEROLS

membrane content.

(89.90) Steroidogenic acute regu-
latory proteins transfer cholesterol from late endo-
some/lysosome (LE/LY) to the mitochondria for
steroid synthesis in steroidogenic cells, and demon-
strate a 7-15-fold increase in expression in patients
with steatosis and NASH.®®’) Increased deliv-
ery of cholesterol to the mitochondrial membrane
results in dysfunction of membrane proteins such as
2-oxoglutarate (2-0x0)? (FIG. 4C). When mito-
chondrial cholesterol content increases in mice and
human HepG2 cells, the fluidity of the mitochon-
drial membrane is reduced, impairing the function
of 2-Oxo and depleting the mitochondrial gluta-
thione pool.”"?? This sensitizes the hepatocyte to
tumor necrosis factor a (TNF-a), promoting oxida-
tive stress, lipid peroxidation, increased mitochondrial
membrane permeability with cytochrome c release,
and signaling for necrosis. % Indeed, studies evaluat-
ing elevated cholesterol content in mice and human

Formation of oxysterols within the cell occurs
either through auto-oxidation of cholesterol in the
setting of oxidative stress, or through hydroxylation by
a number of cytochrome P450 monooxygenases, typi-
cally as an intermediary in the formation of CEs, bile
acids, or steroid hormones.”>¥ Oxysterols are known
to be potent signaling molecules, binding to LXRa
in human hepatocytes and promoting reverse choles-
terol transport, or binding to SREBP-2 and inhib-
iting de novo cholesterol synthesis.®**%% Studies
looking at both animal models and humans with
biopsy-proven NASH show increased levels of oxys-
terols within the liver and subsequent liver damage,
inflammation, and fibrosis.’*1°Y One species of oxys-
terol, 25-hydroxycholesterol, has been demonstrated
to enhance inflammatory signaling in rat hepatocytes
through nuclear factor kappa B (NF-xB) activation,
a key proinflammatory regulator; however, its sulfate
derivative, 25-hydoxycholesterol-3-sulfate, actually

25
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has anti-inflammatory properties.(loz) In the rat mito-
chondria, oxysterols can promote signaling for cellular
is.""Y These findi lex rol
apoptosis. ese findings suggest a complex role
of oxysterols in the pathogenesis of NASH with room

for further experimentation.

CHOLESTEROL ACTIVATES KCs
AND HSCs

In atherosclerotic plaques, cholesterol accumulation
within macrophages results in the formation of foamy
cells, and has been implicated as a prominent com-
ponent of the inflammatory response found in these
plaques.1%1%) Tn much the same way, mouse mod-
els demonstrate cholesterol accumulation within KCs,
the resident macrophages in the liver, and appear to
contribute to the inflammation that is characteristic
of NASH.@% As KCs in both mice and humans are
not able to synthesize cholesterol de novo, they acquire
cholesterol through uptake from the circulation,
through LDLR-mediated endocytosis or scavenger
receptors that bind oxLDL particles, or from process-
ing remnant LDs of dead steatotic hepatocytes.(lm'lo())
Uptake of oxLDL through the scavenger receptors,
CD36 or SR-A, results in trafficking of oxLLDL to
the lysosome, where it gets trapped and cannot be
exported out of the lysosome.(107’108’110) Unlike the
LDLR pathway for cholesterol accumulation, the
scavenger receptor pathway does not possess a neg-
ative feedback loop, leading to rapid accumulation
of oxLDL in KC lysosomes and triggering hepatic
inflammation, 107-108:110.111) Experiments in mouse
models with scavenger receptor knockout/inhibition,
or alleviation of lysosomal cholesterol accumulation,
have shown improvement in the hepatic inflammation
characteristic of NASH. 127114

HSCs, a type of nonparenchymal hepatic cell
located in the space of Disse, are activated by fibro-
genic cytokines elaborated by KCs, specifically trans-
forming growth factor p (TGF-B) and TNF-q,
resulting in transformation into myofibroblasts, which
cause hepatic fibrosis.1* Similar to KCs, experiments
in mice show FC accumulates in HSCs by uptake
from scavenger receptors, specifically lectin-like oxi-
dized LDL receptor-1 (LOX-1), which directly acti-
vates HSCs via signaling through toll-like receptor 4
(TLR-4).11117) The LOX-1 IVS4-14 AG polymor-
phism, encoding a nontruncated splice isoform that
was previously shown to confer higher cardiovascular
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disease (CVD) risk in homozygotes, was associated
with increased severity of NASH in a study of 40
patients with biopsy-proven NASH and 40 matched
controls."® Increased accumulation of FC leads to
decreased lysosomal degradation of TLR-4, and sen-
sitizes the cell to TGF-p signaling.(llé)

CHOLESTEROL
CRYSTALLIZATION

The hepatocyte LD represents one of the body’s
main storage sites for excess cholesterol, which is
transferred to the LD membrane most likely through
direct membrane contact sites with other organelles,
including the ER, mitochondria, peroxisomes, and
LE/LY. FC transferred to the LD membrane can be
esterified to CE for “safe” storage. However, a high
FC concentration can be reached in the LD mem-
brane during this process. As the cholesterol con-
centration in the membrane increases, it eventually
exceeds the ability of phospholipid head groups to
cover all the cholesterol molecules, and excess mol-
ecules precipitate adjacent to the membrane, form-
ing cholesterol monohydrate crystals (FIG. 4D). LD
cholesterol crystals have been observed in steatotic
hepatocytes in both patients with NASH and animal
models of NASH.191%) 1y patients with biopsy-
proven NAFLD, hepatocyte LD cholesterol crystals
were observed almost exclusively in patients with
NASH and not in patients with simple steatosis, sug-
gesting that these cholesterol crystals are important in
pathogenesis rather than innocent bystanders.*®

Cholesterol crystals in subintimal atheroscle-
rotic plaque macrophages are known to activate the
NLRP3 inflammasome in humans and mice, medi-
ating IL-1P and IL-18 release through the caspase 1
pathway. 1129 Tt is plausible that cholesterol crys-
tallization within hepatocyte LD also activates the
NLRP3 inflammasome.’” In mouse hepatocytes,
NLRP3 activation causes pyroptosis, a form of pro-
grammed cell death marked by NLRP3 activation of
caspase 1, DNA damage, and cell membrane pore for-
mation, causing cell swelling and death.??

KCs that process dead hepatocytes with choles-
terol crystals become exposed to these crystals and
their proinflammatory effects. Following pyroptosis or
necrosis of steatotic hepatocytes, their remnant LDs
are encircled by KCs and form characteristic “crown-
like structures” (CLSs), which secrete lysosomal
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enzymes involved in the extracellular processing of
LDs. 125129 Processing of the LDs by lysosomal acid
lipase results in the hydrolysis of CE to FC and fur-
ther production of cholesterol crystals.**12% KCs
that are exposed to cholesterol crystals are trans-
formed into activated lipid-laden foam cells12129
through pathways that likely include activation of the
NLRP3 inflammasome.1?12%122129) Given the cen-
tral role of the NLRP3 inflammasome, it is no sur-
prise that inhibition of this inflammasome in genetic
and diet-induced mouse models of NASH resulted in
decreased levels of inflammation and fibrosis.>®

TAZ PATHWAY

A pathway has been identified recently that directly
connects hepatocyte FC loading with hepatic fibro-
sis through HSC activation.’?” In 2016, Wang et
al. showed that the transcription regulator TAZ was
higher in both mouse models and patients with NASH;
silencing of TAZ prevented or reversed features of
steatohepatitis, but not steatosis; and expression of
TAZ in models of steatosis induced steatohepati-
tis."?”) In most hepatocytes, TAZ is phosphorylated
and in the inactive cytoplasmic state. However, mod-
els of NASH show increased dephosphorylation of
TAZ to the active form, translocation to the nucleus,
and transcription of target genes.'?”) One of the tar-
get gene induced by TAZ is Indian hedgehog (I55),
which can be secreted from hepatocytes and induces
profibrotic genes in HSCs."?”) Wang et al. showed
that silencing of TAZ in NASH models decreased
gene expression of hepatocyte Ihh and subsequent
profibrotic HSC mRNA."*” A follow-up study pub-
lished in 2020 showed that the process of TAZ acti-
vation is initiated by hepatocyte FC, which blocks
proteosomal TAZ degradation through induction of
soluble adenylyl cyclase and resulting Ca release from
the ER."?® This pathway (FIG. 4E) provides a direct
link between increased hepatocyte FC levels and fea-
tures of NASH.

Ezetimibe and Statins in

NASH

Cholesterol-lowering medications (such as statins
and ezetimibe) are very common in patients with

HORNETAL.

NAFLD/NASH due to the high prevalence of hyper-
cholesterolemia, diabetes, and CVD. In addition
to their proven cardiovascular benefits, statins and
ezetimibe also appear to have beneficial effects on
NAFLD/NASH."3) Tyble 3 summarizes stud-
ies that evaluated the effects of cholesterol-lowering
medications on NAFLD/NASH, identified through a
comprehensive review of the literature. Multiple small
prospective studies in patients with either NAFLD
or NASH assessed the effect of ezetimibe on steato-
sis, inflammation, and fibrosis. Although these stud-
ies have shown benefit in biochemical, metabolic,
and histologic outcomes from ezetimibe therapy, the
small size and relatively short follow-up of these stud-
ies limit their interpretation.(mz'l%) A meta-analysis
performed in 2017 encompassing six studies and 273
patients with NAFLD or NASH suggested that eze-
timibe improved serum liver enzymes, hepatocyte
steatosis and ballooning, but had no effect on inflam-
mation or fibrosis."*”

Despite concerns about statin-induced hepa-
totoxicity, studies reported very rare incidence of
statin-related adverse events in patients with liver dis-

ease.(

138139 Post hoc analysis of three large random-
ized, controlled, trials designed to evaluate the effect
of statins on CVD, consisting of 11,587 patients,
including 1,844 with elevated aminotransferases,
demonstrated that statins resulted in improvement in
serum aminotransferase levels and ultrasonographic
steatosis. 122140140 1 2015, a multicenter cohort
study consisting of 1,201 European patients who
underwent liver biopsy for suspected NASH showed
that the 107 patients who were taking statins had a
protective effect from steatosis, inflammation, and
NASH in a dose-dependent manner.™? A multi-
center, Italian cross-sectional study of 346 patients
with diabetes with biopsy-proven NAFLD, con-
firmed that statins were independently associated
with reduced odds of NASH and significant fibro-
sis.1*) Multiple small prospective trials using ator-
vastatin and rosuvastatin demonstrated improvement
in biochemical, radiological, and histological features
of NAFLD and NASH.B144149) A gystemic review
of 121,058 patients with chronic liver disease showed
that statins reduced the risk of portal hypertension,
progression to cirrhosis or decompensated cirrhosis,
and mortality, "3V

Meta-analyses tri-
als, including very large numbers of participants,

of randomized controlled
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demonstrated that statins resulted in a slightly
increased risk of development of diabetes, 01" but
the risk was low both in absolute terms and when
compared with the reduction in coronary events.
Specifically, treatment of 255 patients with statins
for 4 years resulted in one extra case of diabetes (or
approximately one case of diabetes per 1,000 patient-
years). In observational studies, statin-treated patients
had increased hepatic de novo lipogenesis through
activation of SREBP-1c and up-regulation of genes
involved in fatty acid and triglyceride metabolism,
suggesting that activation of these genes contributes
(148) Because insulin
resistance and diabetes are important risk factors for
NASH, these findings raise some concern about the
role of statins as potential NASH pharmacotherapies.

In summary, this evidence suggests beneficial

to insulin resistance and diabetes.

effect of statins on steatosis, inflammation, fibrosis,
portal hypertension and cirrhosis, and confirms the
safety of statins for the treatment of dyslipidemia in
patients with NAFLD and NASH as recommended
by the American Association for the Study of Liver
Diseases.” However, large, randomized, placebo-
controlled trials of statins in NASH adequately
powered for histological outcomes are lacking. Such
studies are desperately needed but very difficult to
design, as it may be considered unethical to random-
ize patients with NASH to placebo, given that most
would fulfill criteria for being on a statin for cardio-
vascular reasons.

Conclusions
NASH is rapidly rising in prevalence world-

wide and currently has no approved pharmacological
treatments. In the near future, the number of liver
transplantations for NASH will surpass all other
indications for liver transplantation. The evidence
presented in this review strongly supports the role of
cholesterol in causing “cholesterol-associated steato-
hepatitis” (CASH) and should serve to focus efforts
on targeting cholesterol lowering as a therapeutic
option. This strategy has multiple advantages. First,
statins are widely available, inexpensive medications
with a proven track record of safety. Second, statins are
proven to reduce cardiovascular mortality, which is the
number-one cause of death in patients with NASH,
and may have even greater cardiovascular benefits
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in patients with NASH."?? Therefore, treatment of
patients with NASH with statins would potentially
simultaneously ameliorate both cardiovascular mortal-
ity as well as liver-related complications (e.g., cirrhosis
and portal hypertension) and mortality. Randomized
controlled trials of statins in patients with NASH or
cirrhosis that are under way are eagerly awaited, while
clearly more such studies are urgently needed.
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