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Abstract: Increasing evidence supports the concept that the vitamin D axis possesses
immunoregulatory functions, with vitamin D receptor (VDR) status representing the major
determinant of vitamin D’s pleiotropic effects. Vitamin D promotes the production of anti-microbial
peptides, including β-defensins and cathelicidins, the shift towards Th2 immune responses, and
regulates autophagy and epithelial barrier integrity. Impairment of vitamin D-mediated pathways
are associated with chronic inflammatory conditions, including inflammatory bowel diseases (IBD).
Interestingly, inhibition of vitamin D pathways results in dysbiosis of the gut microbiome, which has
mechanistically been implicated in the development of IBD. Herein, we explore the role of the
vitamin D axis in immune-mediated diseases, with particular emphasis on its interplay with the gut
microbiome in the pathogenesis of IBD. The potential clinical implications and therapeutic relevance
of this interaction will also be discussed, including optimizing VDR function, both with vitamin D
analogues and probiotics, which may represent a complementary approach to current IBD treatments.

Keywords: vitamin D receptor; vitamin D metabolism; intracellular signaling; regulation of immune
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1. Introduction

Vitamin D is a pleiotropic hormone of the steroid/thyroid superfamily, classically known
for calcium homeostasis, but with several, additional non-calcemic effects, ranging from immune
modulation to cell differentiation and intercellular adhesion. The active form of the vitamin is obtained
after a two-step hydroxylation of the inactive precursor, cholecalciferol. Cholecalciferol undergoes
hydroxylation at position 25, and the resultant inactive intermediate calcifediol [25(OH)D3] is further
hydroxylated at position 1 to obtain the active vitamin, calcitriol [1,25(OH)2D3]. Both the inactive,
as well as the active, forms of vitamin D circulate in the bloodstream bound to vitamin D-binding
protein (VDBP). The active form exerts its effects by binding to a specific transcription-regulating
molecule, the vitamin D receptor (VDR). Low levels of vitamin D have been associated with a variety
of immune-mediated diseases, as well as with altered immune responses to pathogens and increased
susceptibility to infection and cancer [1–4]. In addition, its binding protein has the ability to directly
mediate some immunoregulatory functions [5], while its receptor, also expressed on immune cells,
participates in modulation of inflammatory pathways [6].

Inflammatory bowel diseases (IBD) are chronic, inflammatory disorders that can affect the entire
gastrointestinal tract, and are thought to result from inappropriate and ongoing immune activation
in response to gut luminal agents in genetically predisposed individuals [7,8]. Vitamin D deficiency
is common in the setting of the two major forms of IBD, Crohn’s disease (CD) and ulcerative colitis
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(UC) [9,10]. Interestingly, growing evidence supports the concept that intestinal dysbiosis and vitamin
D metabolism are related in several ways, which may be of interest for uncovering novel pathogenic
mechanisms and for future therapeutic directions in IBD [9,10].

In this context, we reviewed the current literature to summarize emerging evidence regarding
the critical role of the vitamin D axis in the setting of IBD, with particular emphasis on the
cross-talk between the gut microbiome and Vitamin D/VDR-mediated genetic and immune responses.
Our results depict an interesting concept, wherein a balanced intervention on VDR function, both with
vitamin D analogues and probiotics, may represent a complementary approach to IBD treatment.

2. Why Target the Vitamin D Axis in IBD?

Vitamin D, its binding protein and its receptor, constitute the so-called vitamin D axis, for which
many interesting properties at the level of gut physiology have been emerging. The cellular actions of
vitamin D are specifically mediated by the VDR, a ligand-dependent transcriptional regulator of the
nuclear receptor superfamily, which is expressed in a variety of cell types, including mucosal immune
cells and the intestinal epithelium. In addition, the enzyme, Cyp27B1, which converts circulating,
inactive vitamin D [25(OH)D3] into its active, VDR-binding form [1,25(OH)2D3], is also expressed
in different immune cell populations, as well as the intestinal epithelium. Co-localization of such
key players in different cells of the gastrointestinal tract suggests the role of active vitamin D as
a paracrine molecule, whose levels are modulated according to local needs [11–13]. Interestingly,
intestinal bacteria have been shown to regulate the vitamin D axis within the gut, acting on the
intestinal epithelium, as well as on local mucosal immune cells. In particular, the expression of
Cyp27B1 has been reported to be reduced in intestinal epithelial cells of germ-free and antibiotic-treated
mice, as is the expression of several genes involved in innate immunity (e.g., antibacterial peptides,
tight junction proteins, cytokines and their receptors), suggesting that the synthesis of active vitamin
D by the “microbiota-dependent” Cyp27B1 enzyme may be a requirement for the proper development
of local innate immunity [14].

Similarly, probiotics and pathogenic bacteria have shown to modulate VDR expression in
opposite directions, with the former increasing [15], and the latter decreasing [16], its expression.
In particular, VDR is subject to the actions of antagonist molecules, in an attempt of pathogens to escape
immune surveillance and manipulate host genes to increase their own survival [6,17]. The VDR gene
(VDR, 12q12—14) is among the candidate genes that have been extensively studied for associations
with IBD. Results from two recent meta-analyses showed that the risk of CD is increased in the presence
of the VDR ApaI polymorphism and the TaqI tt genotype, whereas the risk of UC may decrease in
the presence of the VDR TaqI polymorphism, especially in Caucasians [18,19]. For Asians, the VDR
FokI polymorphism has been associated to susceptibility to UC [19]. In experimental animal models,
VDR knockout (VDR KO) mice showed greater susceptibility to experimental colitis, manifested as
worse histology scores, increased expression of genes encoding proinflammatory cytokines, and the
development of intestinal dysbiosis [9,20,21]. The latter, in turn, was shown to dramatically alter
the composition of bile acids in feces, and this may profoundly affect further molecular signaling,
with particular focus on the cellular responses involved in immune regulation [22,23].

Vitamin D binding protein (VDBP), or Gc globulin (human group-specific component (Gc)),
is a 55 kDa serum protein secreted by the liver and belonging to the albumin superfamily that is
responsible for transporting active and inactive vitamin D in the plasma [24]. Single nucleotide
polymorphisms (SNPs) in the gene encoding VDBP have been shown to affect circulating levels of
this protein, as well as of circulating 25(OH)D3 [25]. VDBP is essential for the proper functioning
of the endocytic pathway required for the renal uptake of 25(OH)D3 into renal tubular cells and
consequent activation of the vitamin [26]. An association has been reported between specific
SNPs in VDBP (VDBP 420 variant Lys; 416 Asp 420 Lys) and IBD, although their exact meaning
in the pathogenesis of the disease remains to be determined [27]. VDBP has shown additional
properties aside from a vitamin D carrier, particularly serving as a chemotactic and scavenger agent,
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as well as a macrophage activator. In fact, plasma VDBP effectively scavenges G-actin released
at sites of necrotic cells and prevents polymerization of actin in the circulation [24]. In addition,
it functions as a co-chemotactic factor for C5a, which is a very potent chemotactic factor for all
leukocytes, as well as several other cell types, and is generated by limited proteolytic cleavage of
C5 during complement activation [28]. After stepwise modification of its sugar moiety, VDBP is
also converted into macrophage-derived macrophage activating factor (GcMAF), which not only
produces a fully active ingestion function and cytotoxic capacity in 3 hours [29], but also has additional
functions, such as antitumor [30–32] and antiangiogenic [33–35] activities. As a result, cloned GcMAF
constructs [36] and GcMAF-mimicking peptides [37] have been developed for the purpose of studying
their potential clinical use as immunopotentiators.

3. The Vitamin D Axis, Gut Microbiome, and the Gut Mucosal Immune System: Interplay at the
Intestinal Level

Intestinal homeostasis is determined by the interplay among multiple factors, linked through
complex molecular signaling, including the intestinal epithelial barrier, the gut microbiome,
and components of the innate and adaptive immune systems. Interesting effects of the vitamin
D axis on each of these components have been described.

3.1. Intestinal Epithelial Barrier

The differentiated intestinal epithelium constitutes a barrier for the free exchange of molecules
between the intestinal lumen and the gut mucosa. In fact, the presence of adhesion structures
between adjacent epithelial cells, namely tight junctions (occludin, proteins of the zonula occludens,
and claudins), adherens junctions (E-cadherin, catenins, nectin [38]), desmosomes and gap junctions,
guarantees the sealing of the paracellular space and regulates the permeability of the mucosal
barrier. The integrity of the gut mucosa is also crucial for protection against microorganisms.
Disruption of barrier function, in fact, facilitates infection with enteropathogenic bacteria and the
development of intestinal inflammation [39] and IBD [40–44]. Conversely, probiotics have been
shown to decrease paracellular permeability, evaluated by transepithelial electrical resistance (TEER),
as well as to decrease epithelial apoptosis, in different models of intestinal inflammation [45–47].
Impaired mucosal barrier function with hyperpermeability is also common in the setting of
several infectious and immune-mediated diseases of the lung (cystic fibrosis [48], interstitial
lung disease [49], asthma [50,51], tuberculosis [48], chronic obstructive pulmonary disease [52]),
skin (atopic dermatitis [53]), oral mucosa [54,55] and eyes [56], where impairment of the vitamin
D axis has been described. In addition, intestinal epithelial cells cooperate with the hematopoietic
compartments for the management of enteric infections and play an essential role in the initiation of
type 2 immune responses [57,58]. Examples of epithelial-derived immunocompetent cells, include
Paneth cells, goblet cells and the specialized phagocytic, antigen-presenting M cells located in the
follicle-associated epithelium overlying organized lymphoid structures.

Vitamin D and its receptor have a protective effect on epithelial barriers in various tissues,
including the gut mucosa [59–61]. In fact, it is well documented that active vitamin D increases the
expression of several tight junction and adherent junction proteins [62]. In particular, active vitamin D
induces the expression and/or membrane translocation of occludin, the zonula occludens proteins,
ZO-1 and ZO-2, claudins 2, -7 and -12, and vinculin at several anatomic sites, including corneal
epithelium, podocytes, and enterocytes [63,64]. In vitro studies demonstrated that pretreatment with
1,25(OH)2D3 protects intestinal epithelial cells from increased permeability induced by dextran sulfate
sodium (DSS), and in vivo studies using VDR KO mice showed increased susceptibility to DSS-induced
colitis when compared to their wild-type littermates [65]. Moreover, it has been demonstrated that
intestinal epithelial VDR signaling plays a key role in maintaining mucosal barrier integrity by
suppressing intestinal epithelial cell apoptosis, thus regulating gut mucosal inflammation [59,66].
In addition to their sealing properties, adherent proteins are actively involved in signal transduction,
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and VDR can regulate such pathways acting on VDR-regulated promoters. For instance, active vitamin
D attenuates growth and promotes differentiation in colon cancer cells by the VDR-mediated induction
of E-cadherin and inhibition of β-catenin signaling [67–69]. Taken together, these data confirm the role
of the vitamin D axis in mucosal barrier development, integrity and healing capacity.

3.2. Intestinal Microbiome

In recent years, the Human Microbiome Project has provided unprecedented information
regarding the diversity and function of microbial communities and their genes, referred to as the
human microbiome [70]. Sequencing of microbial ribosomal RNA obtained from different body sites
showed that the number and relative distribution of distinct microbial species characterized health
and disease states in humans; for instance, decreased diversity in the gut was observed in IBD [71].
The intestinal microbiome has a role in several functions, including metabolism, mucosal barrier
physiology, immunity, and inflammatory signaling, and its disruption, or dysbiosis, is associated with
the development, maintenance, and perpetuation of various clinical conditions, both intestinal and
extraintestinal. By regulating the expression of antimicrobial peptides [72,73], mucosal barrier function,
and innate immunity [61], vitamin D and its receptor have been shown to influence the composition
and functions of bacterial communities in the gut, protect from dysbiosis, as well as experimental IBD
and its symptoms [9,74].

Although there appears to be no unique and optimal composition of the microbiome
to promote gut health, Bacteroides and Firmicutes species are the most highly represented
under normal conditions [70]. During IBD, a reduction in the number of species within the
phylum Firmicutes—specifically the Clostridium clusters XIVa and IV- and Bacteroidetes-namely
Bifidobacterium, Lactobacillus, and Ruminococcaceae (particularly the butyrate-producing genus
Faecalibacterum)—and an increase in Bacillus spp and Enterobacteriacae, is observed [75–77].
Studies using VDR KO mice and wild-type littermates showed defective autophagy and consequent
gut dysbiosis in the former, with depletion of fecal Lactobacillus and Bacteroides [78]. In a colitis model,
administration of butyrate, a fermentation product of gut bacteria, increased intestinal VDR expression
and suppressed inflammation [78]. Interaction between the vitamin D axis and the gut microbiome
was further demonstrated in a model of experimental colitis on CYP27b1 KO and VDR KO mice
compared to littermates [9]. Results of this study showed greater susceptibility of KO mice to DSS
colitis, which was associated with bacterial imbalance, with more Proteobacteria and less Firmicutes,
similarly to that observed in patients with IBD. Vitamin D deficiency itself was also shown to be a
co-factor for dysbiosis in the setting of a high-fat dietary regimen, and this effect was mediated by the
downregulation of specific α-defensins from ileal Paneth cells, as well as of tight junction genes in the
absence of vitamin D, with consequent endotoxemia and systemic inflammation [79]. Pathogens may
also regulate the monocyte/macrophage vitamin D axis in their own favor through DNA methylation
on specific sequences, namely micro-RNAs (miRs) [13]. As an example, miR-21 can interact with
CYP27B1 mRNA and suppress its activity, thus decreasing localized synthesis of active vitamin D
in monocytes [80].

Probiotics, consisting of ingestible non-pathogenic living microorganisms with the ability to confer
some beneficial effects to the host when consumed in adequate amounts as food components [81],
have been widely used in clinical trials for the treatment of IBD with variable results [82,83]. It has been
recently shown that a properly functioning VDR pathway is required for probiotic protection against
colitis [84], a finding that is of importance since VDR expression can be significantly decreased in IBD
patients as a consequence of chronic inflammation [85] or dysbiosis [6,17]. VDR KO mice, in fact, did not
respond to probiotics such as Lactobacillus rhamnosus strain GG (LGG) and Lactobacillus plantarum (LP)
and had worse severity of Salmonella-induced colitis compared to littermates [84]. The same probiotics
in wild-type mice, indeed, were able to increase VDR expression and its transcriptional activity,
with increased expression of antimicrobial peptides, and had the ability to confer physiological and
histologic protection from Salmonella-induced colitis [84]. Taken together, the interplay of the vitamin
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D axis with the intestinal microbiome is an intriguing, yet undiscovered field of research, with potential
clinical implications.

3.3. Immune System

Besides its role as a site for nutrient absorption, the gut also hosts a unique immune system,
composed of coordinated immunocompetent cells that cooperate in the difficult, unparalleled task
of discriminating between harmful and beneficial antigens, among the plethora of diverse antigenic
components of its intraluminal content [86]. Such ability is crucial for the induction of tolerance towards
nutrients and commensal bacteria, as well as for first-line protection against pathogens. Apart from
epithelial-derived immunocompetent cells, the intestinal immune system consists of organized
lymphoid structures, such as Peyer’s patches (PPs), cryptopatches and isolated lymphoid follicles
(ILFs), which are located immediately below the epithelial layer within the lamina propria. Within the
gut mucosa reside several immune populations, including intraepithelial effector lymphocytes
interspersed within the epithelial lining, polarized CD4+ T cells, such as T regulatory cells (Treg),
T helper 1, 2 and 17 (Th1, Th2, Th17) cells, and IgA-producing plasma cells, as well as innate immune
cells with antigen-presenting cell function, such as dendritic cells (DCs) and monocytes/macrophages,
and the recently identified heterogeneous group of innate lymphoid cells (ILCs) [87].

The vitamin D axis is an important regulator of the innate and adaptive immune systems.
Its effects include decreasing Th1/Th17 T cells and pro-inflammatory cytokines, such as IL-1, IL-6,
IL-8, IFNγ, and TNFα, in favor of Th2 response, increasing Tregs, downregulating T cell-driven
IgG production, inhibiting DC differentiation, and helping maintain self-tolerance, while enhancing
protective innate immune responses [88]. In particular, active vitamin D [89] and glycosylated
VDBP [29] boost autophagy in human monocytes/macrophages, with inhibitory effects on intracellular
pathogens, including Mycobacterium tuberculosis and human immunodeficiency virus type 1 [90].
By boosting C5a activity, VDBP enhances cell recruitment during inflammation, with particular
reference to neutrophils, monocytes and fibroblasts [28,91]. VDBP also modulates the availability of
25(OH)D3 to DCs, indirectly regulating the amount of active vitamin derived from DCs that can become
available to T cells [92]. Of importance in IBD, VDR mediates enhanced production of antimicrobial
peptides, such as β-defensin 2 (DEFB4/HBD2) and cathelicidin (CAMP) that are traditionally
boosted by the activation of nucleotide-binding oligomerization domain-containing protein 2 (NOD2)
after stimulation by microbial muramyl dipeptides [73]. Interesting, a vitamin D deficient diet can
repress the expression of defensins and their activating enzyme, matrix metalloproteinase 7 (MMP7),
with consequent dysbiosis [79]. Notably, the region encoding DEFB2/HBD2 has been identified as a
CD susceptibility locus. The NOD2 gene itself has a VDRE [93,94], and mutations or dysregulation
in NOD2, with consequent decreased expression of antimicrobial peptides, impaired autophagy,
and dysbiosis, are also associated with IBD [93,95,96]. In addition, NOD2 KO-associated altered
microbial composition, with greater susceptibility to DSS colitis, was transmissible to co-housed
wild-type mice [96]. Another mechanism for vitamin D to activate innate immunity occurs by
enhancing the function of another pattern recognition receptor, the Toll-like receptor 4 (TLR4),
which is traditionally activated after recognition of lipopolysaccharide (LPS), a cell wall component of
gram-negative bacteria [97,98]. Interestingly, VDR levels were found to be reduced by more than 50%,
and the pro-inflammatory cytokines, TNFα and IL-1β, were elevated, in colonic biopsies from patients
with CD and UC, indicating that VDR can be repressed by inflammatory mediators [59]. Studies on
wild-type, specific pathogen-free IL-10 KO mice, and VDR KO mice showed impaired T cell homing to
the gut in the absence of vitamin D signaling, with less CD8+ intraepithelial lymphocytes, low levels of
IL-10 and consequent increased inflammatory response to the normally harmless commensal flora [99].
Stimulation of VDR by microbial-derived bile acids is another pathway of immune modulation
mediated by the vitamin D axis, of which changes in bile acid profiles after dysbiosis can impact
such signaling [23].
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4. Role of the Vitamin D Axis and Dysbiosis in Immune-Mediated Diseases: Focus on
Experimental Studies Targeting the Vitamin D Axis in IBD

Autoimmune diseases are self-directed pathologies resulting from an aberrant activation of the
immune system against harmless self-antigens, with consequent inflammation and tissue damage
compromising the affected target organs or systems. An association has been consistently described
between autoimmunity and vitamin D epidemiology and genetics, thus promoting great interest in
the potential clinical applications of targeting the vitamin D axis in such conditions, including IBD.
Considering the interplay between the vitamin D axis, the gut microbiome and the mucosal immune
system, the reciprocal effects of targeted interventions on each of these components represents an
intriguing therapeutic opportunity.

Human clinical trials targeting the vitamin D axis in IBD are often heterogeneous in their design
and methods, and this prevents the exact comparability of results. However, despite differences in
disease history and treatment, as well as additional environmental factors that can influence vitamin D
status, most studies are in agreement regarding the beneficial effects of vitamin D supplementation
on disease activity and/or quality of life [100–106]. As an example, a randomized, double-blind
placebo-controlled study on 94 CD patients with inactive disease, assigned to either 1200 IU vitamin
D3 daily or placebo for 12 months, showed that the relapse rate had a trend towards being lower
in the treatment versus placebo group (p = 0.06) [100]. Similar results were described after a trial of
high-dose vitamin D3 at 10,000 IU daily (n = 18) compared to 1000 IU daily (n = 16) for 12 months in
patients with CD in remission, with less clinical relapse of disease in patients receiving a higher dose
of vitamin D (0% vs. 37.5%, p = 0.049) [105]. Similarly, a recent prospective randomized controlled trial
on 18 patients with UC and hypovitaminosis D showed that vitamin D3 supplementation improved
quality of life and reduced UC disease activity, especially at higher doses (4000 IU daily versus
2000 IU daily) [103]. Other studies have reported a short-term beneficial effect on disease activity
in CD patients treated with vitamin D, particularly in its active form [101]. A recent pilot study on
CD and UC patients assigned to oral vitamin D supplementation targeting a serum concentration
of 100–125 nmol/L showed successful and safe improvement of symptom-based activity scores,
but did not show significant changes in objective measures of intestinal or systemic inflammation
after 12 weeks [104]. In addition, a randomized placebo-controlled clinical trial on 108 IBD patients
with vitamin D deficiency (serum 26(OH)D < 30 ng/mL) showed that oral supplementation with
cholecalciferol 50,000 UI/week was not significantly efficacious in reducing serum TNFα levels after
12 weeks (p = 0.07) [106]. In patients with multiple sclerosis, daily vitamin D supplementation (5000 IU
for 3 months) increased the abundance of Akkermansia, which promotes immune tolerance, as well as
Faecalibacterium and Coprococcus, which produce the VDR-activating, anti-inflammatory fermentation
product butyrate [107]. In a pilot study, the gut microbiome was modified and intraepithelial CD8+
T-cells in the terminal ileum increased, even in healthy volunteers after 2-months of vitamin D
supplementation [108].

Given the growing evidence supporting the intimate relationship between the gut microbiome
and the vitamin D axis in autoimmunity, potential contributing factors may help to explain the
observed results. For instance, bacterial-induced epigenetic modifications in cytochromes involved
in vitamin D metabolism, as well as changes in bile acid profiles after dysbiosis, can influence
VDR-mediated signaling. Use of probiotics, indeed, promotes VDR expression and its antimicrobial
effects, which is beneficial to dampening colonic inflammation. In turn, vitamin D may restore a
healthier gut microbiome and attenuate inflammation. Therefore, a correct nutraceutical approach
to immune-mediated diseases, including IBD, should contemporarily exert beneficial effects on both
VDR expression and signaling, and the gut microbiome.

5. Future Directions

The role of vitamin D in immune-mediated diseases appears to be intimately associated with
bacteria metabolism, with chronic dysbiosis causing VDR dysfunction and triggering a vicious
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cycle, wherein a compromised immune system perpetuates disease. Restoring VDR function at
different cellular levels should therefore be considered as a therapeutic option. Probiotics and
olmesartan proved to be effective in this sense in experimental settings, but require additional testing
in human studies in specific clinical settings [15,16,84,109]. To date, in fact, sparse research has
been performed on the reciprocal effects of probiotics and vitamin D in humans. An example is a
double-blind, placebo-controlled, randomized trial on 127 otherwise healthy hypercholesterolemic
adults randomized to consume L. reuteri NCIMB 30242 or placebo capsules over a 9 week intervention
period. The study showed a significant increase in circulating vitamin D in response to oral probiotic
supplementation compared to placebo (p = 0.003) [110]. Olmesartan is an angiotensin receptor blocker
with VDR-binding properties. According to some evidence, it acts as a VDR agonist and is able to
restore proper VDR function by displacing bacterial products bound to the receptor with inhibitory
effects [16]. Olmesartan was proposed in combination with pulsed, low dose, broad-spectrum,
bacteriostatic antibiotics as an approach to reverse the disease process in autoimmune diseases [16].
Raising epithelial VDR levels by vitamin D analogues or by anti-TNF therapy may represent an
additional mechanism to ameliorate IBD by reducing IEC apoptosis [59]. In addition, several
VDR ligands with low calcemic effects, but high therapeutic potential have drawn attention as
possible alternatives to active vitamin D [111]. In fact, despite major side effects of vitamin D
supplementation, like hypercalcemia, have been rarely reported and are usually only observed after
exposure to high doses of the active hormone, the risk of vascular calcifications, hypercalciuria and
renal complications following long-term exposure to vitamin D remains uncertain [112]. Non-vitamin
D VDR ligands demonstrated in vivo efficacy in protecting against, or reducing the severity of,
experimental colitis [113–116]. Similarly, in vitro studies on human immune cells have proven the
ability of these analogues to modulate the immune system through the switch of Th1 into Th2
immune response and the down-regulation of pro-inflammatory cytokines in peripheral mononuclear
cells [117–120]. Glucuronide conjugates of vitamin D represent an additional option for targeted
delivery of active vitamin D at specific sites of the gastrointestinal tract, namely the ileum and colon, a
mechanism that exploits bacteria metabolism. In fact, bacteria residing in the lower gastrointestinal
tract produce β-glucuronidase enzymes that can cleave glucuronide and liberate 1,25(OH)2D3 for local
actions [121,122]. Duodenal bacteria did not appear to produce the same enzyme [122]. Therefore,
the oral administration of such water-soluble vitamin D compounds allows their selective action
at the lower intestinal tract, which is typically affected by IBD, without hypercalcemic effects,
and theoretically improves the efficacy of rectally-administered vitamin D, whose diffusion would
exclude the ileum. In accordance with this, βGluc-1,25(OH)2D3 proved to ameliorate the severity of
experimental IBD in mice, without rising blood concentrations of calcium [122]. Finally, in the era of
personalized medicine, a better knowledge of targeting gene expression, or anticipating the potential
response to treatment based on genetic variants of specific genes [123], may further help improving
quality of life in chronic diseases.

In conclusion, the horizon opened by current advances in knowledge in the field of microbiomics
and nutraceuticals depicts interesting implications in the treatment of immune-mediated diseases.
Despite persistent gaps preventing the possibility of recommendations to incorporate manipulation of
the vitamin D axis and microbiome into clinical practice guidelines, results of recent research encourage
the pursuit of this goal for better, targeted therapy for the treatment of patients with IBD.
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Abbreviations

VDBP Vitamin D binding protein
VDR Vitamin D receptor
IBD Inflammatory bowel diseases
CD Crohn’s disease
UC Ulcerative colitis
KO Knockout
SNPs Single nucleotide polymorphisms
GcMAF Group-specific component macrophage activating factor
TEER Transepithelial electrical resistance
IECs Intestinal epithelial cells
DSS Dextran sodium sulfate
RNA Ribonucleic acid
DNA Deoxyribonucleic acid
PPs Peyer’s patches
ILFs Isolated lymphoid follicles
Treg Regulatory T cells
Th T helper
DCs Dendritic cells
ILCs Isolated lymphatic cells
IL Interleukin
IFN Interferon
TNF Tumor necrosis factor
HBD Human beta defensin
CAMP Cathelicidin antimicrobial peptide
NOD2 Nucleotide-binding oligomerization domain-containing protein 2
MMP Matrix metalloproteinase
TLR Toll like receptor
LPS Lipopolysaccharide
IU International unit
OR Odds ratio
CI Confidence interval
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