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Abstract

Microbial community analysis was carried out on ruminal digesta obtained directly via
rumen fistula and buccal fluid, regurgitated digesta (bolus) and faeces of dairy cattle to
assess if non-invasive samples could be used as proxies for ruminal digesta. Samples were
collected from five cows receiving grass silage based diets containing no additional lipid or
four different lipid supplements in a 5 x 5 Latin square design. Extracted DNA was analysed
by gPCR and by sequencing 16S and 18S rRNA genes or the fungal ITS1 amplicons. Fae-
ces contained few protozoa, and bacterial, fungal and archaeal communities were substan-
tially different to ruminal digesta. Buccal and bolus samples gave much more similar
profiles to ruminal digesta, although fewer archaea were detected in buccal and bolus sam-
ples. Bolus samples overall were most similar to ruminal samples. The differences between
both buccal and bolus samples and ruminal digesta were consistent across all treatments. It
can be concluded that either proxy sample type could be used as a predictor of the rumen
microbial community, thereby enabling more convenient large-scale animal sampling for
phenotyping and possible use in future animal breeding programs aimed at selecting cattle
with a lower environmental footprint.

Introduction

Ruminant livestock production has a large environmental footprint because of emissions of the
greenhouse gas, methane, and to high nitrogenous emissions in urine and faeces [1]. The pri-
mary source of these emissions is rumen microbial metabolism [2]. Thus, understanding the
ruminal microbiota is a vital prerequisite for improving the environmental credentials of meat
and milk production. The introduction of high-throughput sequencing techniques has opened
new ways to explore complex microbial ecosystems, including the rumen [3-6]. Sampling
ruminal digesta is essential to enable the technology benefits to be realized. Rumen sampling
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can be carried out by oral intubation, but this is an unpleasant procedure for the animal and
also results in a sample that is often heavily contaminated with saliva [7]. Rumenocentesis pro-
vides valid samples but involves puncturing the abdominal wall with a needle and removing
digesta by syringe, also undesirable in terms of animal welfare [8], and restricts the amount of
sample that can be collected. The most reliable samples are obtained from animals that have
been surgically modified by fitting a ruminal cannula [7,9], but this requires skilled surgery,
dedicated animal facilities and in most countries requires formal governmental permission. In
any case, rumen fistulation is impractical for sampling large numbers of animals.

Ruminants regurgitate ruminal contents regularly in order to chew the partially digested
plant material [10,11]. The chewed bolus is then swallowed for further microbial degradation.
It might be expected, therefore, that the microbiome of the mouth could represent a reflection
of the ruminal microbiome./If so, collection of small samples of oral fluid could be used as a
proxy for assessing the microbial ecology of the rumen, avoiding the need for more invasive
sampling procedures. Our hypothesis was that the oral sample will contain microbes from the
regurgitated bolus that results from rumination and that the microbial composition of the
bolus might be representative of the ruminal community. Another proxy that has been investi-
gated before is faeces. The faecal community is significantly different to that of the rumen [12-
15], but nonetheless there may be indicators that could prove useful, analogous to the presence
of faecal archaeol, a membrane lipid of ruminal archaea, being used as a marker for ruminal
methanogenesis [16-18]. The aim of the present experiment was to compare the communities
in these potential alternative samples in order to evaluate their usefulness as proxies for direct
sampling of ruminal digesta. A paper has been published recently [19] in which the same
hypothesis was explored using buccal samples in sheep.(The present paper confirms the con-
clusions of that paper concerning the validity of buccal sampling, in this case using dairy cows,
and further amplifies the investigation by comparing bolus and faecal samples.

Materials and Methods
Animal experimentation

All experimental procedures were approved by the National Ethics Committee (Hameenlinna,
Finland) in accordance with the guidelines established by the European Community Council
Directives 86/609/EEC [20]. The experiment was conducted between 15 February 2012 and 3
July 2012 at Natural Resources Institute Finland (formerly MTT Agrifood Research Finland),
Jokionen Finland (60.8° N, 23.5° E; altitude 103 m). Five Finnish Ayrshire cows fitted with
rumen cannula (#1C, i.d. 100 mm, Bar Diamond, Inc., Parma, ID) of (mean + SE) 4 + 0.6 par-
ity, 63 + 11.7 d in milk, and 705 + 25.5 kg live weight were used in a 5 x 5 Latin square with
28-d experimental periods. Treatments comprised total mixed rations based on grass silage
(forage: concentrate ratio 60:40 on a dry matter (DM) basis) containing no additional fat (CO)
or 50 g/kg diet DM of methyl esters of myristic acid (MA), rapeseed oil (RO), safflower oil
(SO) or linseed oil (LO). Lipid supplements replaced concentrate ingredients. Each period
comprised 2 d adaptation, 21 d supplementation, and 5 d washout to minimize treatment
carry-over effects. Samples for the analysis of rumen microbial composition were collected at
15.00 h on d 20 and 09.00 h on d 22 of each period.

Collection and processing of samples

Ruminal digesta samples were collected from four regions (anterior dorsal, anterior ventral,
posterior dorsal, and posterior ventral) within the rumen-reticulum. Immediately after collec-
tion, ruminal digesta samples were mixed thoroughly and squeezed through 2 layers of
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cheesecloth. Five hundred pl of rumen liquid were mixed with 1 ml of phosphate buffered
saline-glycerol (30% v/v) buffer (PBS-gly) and immediately frozen at -80°C.

Regurgitated ingesta (bolus) samples were collected as close in time as possible to that of
rumen samples. Depending on the rumination behaviour of each cow, the time after rumen
sampling varied among the animals but did not exceed 20 min. Bolus samples were processed
in the same way as rumen samples.

Buccal samples (effectively saliva mixed with bolus particles) were collected at the same
time as bolus using sponge swabs. Three collection methods were investigated: (i) samples
were collected using the BuccalAmp DNA extraction kit (Epicentre) and (ii) using the Perfor-
magene Livestock (PG-100) kit (DNA genotek) and processed following the manufacturer’s
protocols, or (iii) samples were collected using Performagene Livestock sponge swabs, immedi-
ately submerged in 1 ml of PBS-gly buffer and frozen at -80°C. Processing of samples based on
method (iii) was the best in terms of DNA quality and quantity, and therefore used for sam-
pling. For technical reasons, buccal swabs could not be taken during the first experimental
period.

Fresh faeces were collected by stimulating rectal activity at the time around rumen sam-
pling. Twenty five g of faeces were preserved in 50 ml of PBS-gly buffer and stored at -80°C.

Total genomic DNA was extracted from 1 ml of mixed d 20 and d 22 sample (in case of
rumen, bolus and buccal swab) or 30 mg of faeces following the protocol of Yu and Morrison
[21].

Quantitative PCR of 16S and 18S rRNA genes

DNA concentrations were determined with a NanoDrop ND 1000 Spectrophotometer (Nano-
Drop Technologies, Wilmington, DE). DNA was diluted to 0.1 ng/pl in 5 ug/ml herring sperm
DNA for amplification with universal bacterial primers UniF and UniR [22] and 1 ng/pl in

5 pg/ml herring sperm DNA for amplification of other groups [23]. Quantitative PCR was car-
ried out using a BioRad CFX96 as described by Ramirez-Farias et al. [24]. Primer sets and tar-
get species are described in Table A in S1 Text. Amplification of archaeal 16S RNA genes was
carried out using the primers described by Hook et al. [25] and calibrated using DNA extracted
from Methanobrevibacter smithii PS, a gift from M. P. Bryant, University of Illinois. Amplifica-
tion efficiency was evaluated using template DNA from Roseburia hominis A2-183 (DSM
168397) for the universal bacteria and Clostridium Cluster XIVa calibrations, Faecalibacterium
prauznitzii A2-165 (DSM 17677") for Clostridium Cluster IV, and Bacteroides thetaiotaomi-
cron VPI-5482 (DSM 2079") for Bacteroidetes. Protozoal 18S rRNA gene amplification was
calibrated using DNA amplified from bovine rumen digesta with primers 54f and 1747r [26].
Coverage of qPCR primers was checked from original references and by use of the Probe
Match tool of the Ribosome Database Project [27]. Bacterial abundance was calculated from
quadruplicate Ct values using the universal bacterial calibration equation. Pairwise differences
between treatments and between samples within treatments were evaluated by a simple t-test.
P values have been adjusted for multiple testing using the Benjamini-Hochberg method [28].

Amplicon preparation and sequencing

Primers used for PCR amplification of bacteria and archaea 16S rRNA genes, ciliate protozoa
18S rRNA genes and anaerobic fungi ITS1 genes were designed in silico using ecoPrimers [29],
the OBITools software suite [30] (http://www.grenoble.prabi.fr/trac/OBITools) and a database
created from sequences stored in GenBank. For each sample, PCR amplifications were per-
formed in duplicate. An eight nucleotide tag unique to each PCR duplicate was attached to the
primer sequence, in order to enable the pooling of all PCR products for sequencing and the
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subsequent assignation of sequence reads to their respective samples. PCR amplicons were
combined in equal volumes and purified (QIAquick PCR purification kit, Qiagen, Germany).
Amplicon libraries were prepared in Fasteris SA (Geneva, Switzerland https://www.fasteris.
com/dna/) using the TruSeq Nano DNA HT Sample Prep Kit from Illumina using a protocol
with only five PCR cycles (https://www.fasteris.com/dna/?q=content/metafast-protocol-
amplicon-metagenomic-analysis). All markers were sequenced using the MiSeq technology
from Illumina, which produced 250-base paired-end reads, except for the archaea marker,
which was sequenced on the Illumina HiSeq platform, generating 100-base paired-end reads.
In silico analysis showed that shorter archaea amplicons did not compromise ability to identify
archaea at species level.

Sequence analysis and taxonomic assignment

Alignment of paired-end reads, sample assignment and removal of sequences with ambiguous
nucleotides and sequences of lengths outside the empirical sequence length distribution were
performed with the OBITools software suite. Sequences were deposited in Dryad database
under accession number http://dx.doi.org/10.5061/dryad.1b07d. Sequences were clustered into
operational taxonomic units (OTU) at 97% similarity using UCLUST [31] and filtered for chi-
meric reads using ChimeraSlayer (bacteria, protozoa and archaea) or UCHIME (fungi) as
implemented in QIIME pipeline v1.7.0 [32]. Taxonomy was assigned using the BLAST method
[33]. Bacterial OTUs taxonomy was assigned using the Greengenes 12_10, archaeal —RIM-DB
database [34], that of ciliate protozoa using the SILVA 18S database [35] and anaerobic fungi
were assigned using a curated fungal ITS reference database [36] kindly provided by AgRe-
search Ltd (Palmerston North, New Zealand). Singleton OTUs were removed and the data
from each sample were rarefied to the similar sequencing depth prior to further analyses using
QIIME. Pairwise taxonomy comparisons were performed by computing Pearson correlation
coefficients as implemented in QIIME. In total, 20 rumen-bolus-buccal swab-and faecal sam-
ples collected from the same animals at the same time were compared. Scatter plot analysis was
done using R v2.15.0 [37].

For creating microbial co-occurrence networks in rumen and alternative sampling sites, the
SparCC microbial association network inference tool [38] was used to calculate correlation
coefficients between all bacteria, archaea, ciliate protozoa and fungi at the genus or the deepest
identifiable taxonomic classification level. Correlations were derived where X = (x_ij), i,
j=1,2,...,mis the resulting correlation matrix with x_ij being the pair wise correlation between
microbes i and j and m being the total amount of compared microorganisms. An adjacency
matrix A = (a_ij), ,j = 1,2,. . ,m was determined where a_ij = 1, if x_ij> = 0.25,a_ij = -1, if
x_ij < =-0.25and a_ij = 0 else. Once determined, the adjacency matrix was used to construct a
co-occurrence network, where each node represents a taxon while the edges between the nodes
represent positive/negative correlations between taxa. Communities within the networks were
identified by applying the leading eigenvector [39] method using the R-Package "igraph' [40].
The pairwise similarities between the community structures of networks have been evaluated
for each treatment and sampling site separately using the adjusted rand index [41] and visual-
ized as a heatmap, where brighter colours refer to larger rand values indicating closer
similarity.

Results

In total, 80 samples, collected from four sampling sites, the rumen, buccal fluid, bolus and fae-
ces were compared. Samples were collected from 5 lactating cows used in a 5 x 5 Latin Square
with 28-d experimental periods to evaluate 5 experimental diets. Treatments comprised total
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mixed rations based on grass silage containing no additional fat (CO) or supplemented with
methyl myristate (MA), rapeseed oil (RO), safflower oil (SO) or linseed oil (LO). Diets were

formulated to induce changes in rumen microbial populations to provide a robust test of the
suitability of sampling proxies.

gPCR analysis of 16S and 18S rRNA genes from ruminal, buccal, bolus
and faecal samples

The abundance of different microbial groups was compared by qPCR across treatments and
sample types (Fig 1; Tables B and C in S1 Text). Faecal samples differed markedly from corre-
sponding ruminal samples, in that although archaea were present at a similar abundance, pro-
tozoa were virtually absent, and total bacteria were higher. Clostridium Cluster IV was on
average 5x more abundant in faeces than in ruminal digesta. Bacteroidetes showed a corre-
spondingly lower abundance.

Buccal swab samples contained similar abundances of total bacteria to ruminal samples, but
the proportion of Bacteroidetes tended to be higher and Clostridium Clusters IV and XIVa
lower. Archaea were 0.48x as abundant in swab samples compared to ruminal samples. Proto-
zoal 18S rRNA abundance appeared to be 1.7x higher in swab samples.

Samples from the bolus of regurgitated digesta were generally closer in profile to ruminal
digesta samples removed via the ruminal fistulae. Archaea were 0.80x, protozoa were 0.75x
and total bacteria were 1.22x the abundance in ruminal digesta, although differences were not
statistically significant due to high variability between samples. The proportions of the different
classes of bacteria were similar.

No differences (FDR < 0.05) were detected due to treatment in any of the sample types,
except that ciliate protozoa tended to be decreased in rumen and oral samples by dietary MA
supplements, with a compensatory increase in total bacteria.

Microbial composition of different sampling sites by rRNA gene amplicon
analysis

Twenty rumen-bolus-buccal swab-faeces samples sets were collected for sampling site compar-
isons. In total, 7,305,504 high quality sequencing reads across all 4 major microbial groups
(bacteria, archaea, ciliate protozoa and anaerobic fungi) were generated. The number of
sequences assigned to each microbial group is reported in Table D in S1 Text. Microbiota com-
position is presented both as relative abundance in extracted DNA (Fig 2) and the difference in
abundance relative to that determined in ruminal digesta (Fig 3; Fig A in S1 Text).

One hundred and four genus-like groups of bacteria were identified in the total dataset.
Fifty of these had an average abundance above 0.5% in at least one of the treatments and sam-
pling sites but only 16 could be identified to the genus level. The remaining 54 groups with
average abundance below 0.5% were pooled at the lowest common taxonomic level. In total,
they accounted for less than 5% of all sequencing reads. The archaeal community was repre-
sented by 9 genera consisting of 15 groups at the species level, while ciliate protozoa and fungal
populations were represented by 14 groups at the genus level, respectively.

The bacterial communities in ruminal, bolus and buccal swab samples were remarkably
similar to each other and affected little by treatment. The phylum Bacteroidetes was similar in
rumen and bolus samples (ca. 45% of total sequences) but was 10% higher in buccal swabs and
20% lower in faeces. These differences were mainly related to the proportion of Prevotella,
which was the most abundant bacterial genus in rumen-bolus-swab samples (Fig 2). The Rike-
nellaceae family and the phylum Actinobacteria were detected in faeces but not in other sam-
ples. Bolus samples also represented a close match to rumen samples in the abundance of
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Fig 1. qPCR of 16S and 18S rRNA genes in buccal swabs, regurgitated digesta (bolus), ruminal
digesta and faeces. Samples collected from lactating cows fed a grass silage based diet containing no
additional fat (CO) or supplemented with 50 g/kg diet dry matter of methyl myristate (MA), rapeseed oil (RO),
linseed oil (LO) or safflower oil (SO). Results are expressed as copy number per ng of extracted DNA. Error
bars represent SD, n = 4 per treatment, except for four buccal samples, one each from CO, RO, LO and SO,
from which satisfactory amplification was not obtained.

doi:10.1371/journal.pone.0151220.g001

Firmicutes (35%) while in faecal samples Firmicutes accounted for 70% of all sequences, with
the Ruminococcus genus being the most abundant (Fig 2). Out of eight distinct bacterial groups
within the Lachnospiraceae family, the most obvious differences among the sampling sites were
related to a group of bacteria classified only at family level (Lachnospiraceael). This group was
overrepresented in bolus, underrepresented in swabs and absent in faecal samples. Differences
between rumen and swab samples were related to lower abundance of Clostridial, Ruminococ-
caceael, Coriobacteriales groups and Butyrivibrio genus in swabs, accounting for 1-2.5% lower
abundances compared to ruminal digesta (Fig 3a).

In the archaeal communities, Methanobrevibacter dominated in rumen-bolus-swab samples
but the proportion of Mbb. gottschalkii was underrepresented and Mbb. ruminantium overesti-
mated in bolus and buccal swab samples compared to ruminal samples (Figs 2 and 3b). Metha-
nosphaera was the second most common genus among archaea in these samples. In faeces, the
Methanocorpusculum genus, not detected in rumen-bolus-swab samples, accounted for up to
53% of sequencing reads, with Methanobrevibacter and Methanosphaera genera being less
abundant. Five distinct groups within the Methanomassiliicoccaceae family were detected in
rumen-bolus-swab samples at similar abundance below 0.1% (Fig 3b). Diet had little influence
on the archaeal community of the different sample types (Fig 2).

Ciliate protozoa composition in bolus samples matched closely rumen samples but differ-
ences were observed in ciliate taxon abundance. Entodinium was more abundant whereas Iso-
tricha and Metadinium minorum were less abundant in bolus compared to rumen samples.
Buccal swab samples contained a high proportion of Diplodinium (>33%) compared to rumen
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Fig 2. Relative abundance of bacteria, archaea, protozoa, and fungi based on amplicon sequencing of
16S-18S rRNA genes, and ITS1 sequences in rumen, bolus, buccal swabs and faeces. Samples
collected from lactating cows fed total mixed rations based on grass silage containing no additional fat (CO),
or supplemented with 50 g/kg dry matter of methyl myristate (MA), rapeseed oil (RO), safflower oil (SO) or
linseed oil (LO). Data reported based on the mean of 4 animals per dietary treatment.

doi:10.1371/journal.pone.0151220.g002

samples (<1%), whereas the proportion of uncultured Entodinium was lower by 16-23%. Fur-
thermore, the relative abundance of Metadinium minorum and Raabena bella in buccal swabs
was below 1% compared to 6-17% in rumen and bolus samples, while Polydiniella mysorea
was detected in swabs (1-2%) but only in trace amounts in other sample types. No rumen spe-
cific protozoa were observed in faecal samples. The much lower abundance of faecal protozoa
included the parasitic ciliate protozoa, Balantidium coli and Blastocystis sp. that were absent
from rumen-bolus-swab samples. Treatment had little influence on the protozoal community
of the different sample types (Fig 2).

Dietary lipid supplements had a profound effect on the fungal population composition,
particularly methyl myristate (Fig 2). Apart from Orpinomyces 1b found only in faeces at an
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doi:10.1371/journal.pone.0151220.9003

abundance below 3%, the composition of the fungal population in rumen-bolus-swab samples
was similar. Differences were related to variation in abundance of Caecomyces1, KF1, Neocalli-
mastix] and SK3 fungal groups. The closest match was observed between rumen and bolus
samples (Fig 3b).

Correspondence analysis of microbial composition between sample
types

To evaluate how well the microbial communities in bolus, buccal swabs or faecal samples rep-
resented that in ruminal digesta, scatter plots were generated (Fig 4). In the scatter plots the rel-
ative abundances of every microbial taxon from each animal, representing all 3 non-invasive
sampling sites, were compared with rumen samples. The strength of similarity between sam-
pling sites was estimated as an overall Pearson correlation coefficient. The correlations derived
indicated that bolus samples matched most closely the rumen composition for bacteria

(r value = 0.99), while little overall correspondence was observed between faecal and rumen
samples. Even though differences in abundance were observed among the more common bac-
terial groups in the buccal swab-rumen comparison, the overall correlation was high nonethe-
less (r value = 0.98). Patterns of similarity for archaea and anaerobic fungi among sampling
sites was similar as for bacteria (Fig 4a and 4b). The largest difference between bolus and buccal
samples compared with rumen digesta was for ciliate protozoa, while no relation to faecal pro-
tozoal composition was detected (Fig 4b).
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Fig 4. Scatter plot analysis of differences in relative abundance, estimated for each microbial taxon in all individual animals and across sample
types, respectively. a) Each bacterial taxon in samples collected from all cows is represented as separate (o) in the lower triangle, while archaea are
presented as (A) in the upper triangle; b) Anaerobic fungi are marked as (o) and ciliate protozoa as (®). The average Pearson correlation coefficient is
indicated in the bottom-right corner of each diagram.

doi:10.1371/journal.pone.0151220.9004

Microbial co-occurrence analysis

The potential of collecting bolus, faeces or buccal swabs as a reliable alternative to rumen sam-
pling was examined through the generation of microbial association networks. Analysis was
performed for each dietary treatment and on each sample type. Only correlations with SparCC
|r| >0.25 were used for constructing the networks. Microbial communities identified within
the networks of alternative sampling types were compared with rumen communities. Similari-
ties of the networks are presented as a heatmap (Fig B in S1 Text). Microbial networks identi-
fied in bolus and swab samples did not offer an exact match to the network composition
observed in rumen samples, while faecal microbial interactions were not comparable to the
other sampling sites. Dietary treatments appeared to have an effect on the direct or indirect
interactions between microbial taxa, with changes in response to MA showing the most distinct
differences.

Use of archaeal abundance as a biomarker of methane emissions

The qPCR data for individual animals were used to calculate the ratio of abundance of archaea
and bacteria, and the effects of dietary treatment and different sample types were compared.
Inclusion of additional lipid in the dietary treatment decreased the relative proportions of
archaea relative to bacteria in rumen samples from MA (P = 0.013) and LO (P = 0.033) treat-
ments, with the responses to MA being the most pronounced, lowering the ratio of ruminal
archaea:bacteria abundance by 36% compared to the control (Table E in S1 Text). The effects
of lipid supplements were also evident in the other sample types, but the archaeal abundance
was significantly lower in all other samples compared to ruminal digesta (Table E in S1 Text).
When individual animals were compared across treatments, a closer correlation existed
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Fig 5. Archaeal abundance expressed as the archaea:bacteria ratio in different sample types in
comparison with ruminal samples. Relationships are derived for individual animals from the dataset
presented in Fig 1 based on n = 20 per sampling site, except for buccal swab samples, from which 16 were
obtained. Regression equations relating the archaea:bacteria ratio in the rumen with alternative sample types
are:- Bolus: Y = 0.491+0.1393 X + 0.290+0.2710, r2 = 0.376, n = 20, P = 0.0024 Swab: Y = 0.313+0.0828 X
+0.277+0.1621,r2=0.471,n =16, P = 0.0020 Faeces: Y = 0.557+0.3377 X + 0.190+0.1736, r2 = 0.010,
n=20,P=0.288.

doi:10.1371/journal.pone.0151220.g005

between ratio of archaea to bacteria in ruminal digesta with buccal swabs than bolus samples,
while no association was evident in this ratio between rumen and faecal samples (Fig 5). How-
ever, neither buccal nor bolus samples showed a relationship that was close to unity with rumi-
nal samples, indeed the slopes were much lower (0.491 and 0.313, respectively), although the
positive intercepts did not differ (P > 0.10) from zero.

Discussion

There is a pressing need to carry out large-scale ruminal microbiome analysis to generate a
microbial phenotype for use as a trait in future animal selection for rumen function, including
methanogenesis [6,42], feed conversion efficiency [6,42,43] and health [6,44,45]. Both metha-
nogenesis and feed conversion efficiency have major implications on the environmental impact
of ruminant livestock production [2,6]. The microbial phenotype may be defined as a simple
ratio [46] or be far more complex based on microbial gene abundance [47]. The present paper
reports the possibility to use oral samples as proxies for ruminal digesta, confirming the broad
conclusions of a recent similar study in sheep [19]. While the communities were not identical,
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strong correlations were identified, indicating that the collection and analysis of oral samples
could be used to predict the community structure in the rumen.

There have been many studies that examined the microbiota of the rumen and some that
characterized the faecal community. Relatively few, however, have compared the two directly.
Frey et al. [12], Michelland et al. [14] and Romero-Perez et al. [15] used restriction fragment
analysis to obtain a fingerprint of each type of sample, showing marked differences in the gross
structure of the two communities. More recently, deep sequencing methods were used [13],
which demonstrated that there were much greater differences in detailed taxa than was
revealed by restriction fragment analysis. The present analysis has parallels with the last study,
while also comparing the eukaryotes and archaea.

The ruminal microbiota contains mainly bacteria, with lower numbers of archaea, anaerobic
fungi and ciliate protozoa. The bacterial community was similar to those analysed previously,
being dominated by Firmicutes and Bacteroidetes, the former mainly Clostridium Cluster XIVa
and the latter mainly Prevotella spp. [3,5]. The archaeal, fungal and protozoal communities
also had similar profiles to those observed in published studies [48,49]. The ruminant faecal
microbiota has been examined previously [12-15], with results similar to those presented here
in that Clostridium Cluster IV is much more predominant in faeces than the rumen and that
Bacteroidetes are less abundant. The anaerobic fungal species in faeces were similar to the
rumen, at slightly different abundances. Protozoa were present at low abundance and were not
ruminal species. They represented parasitic ciliates that live in the gastrointestinal tract of vari-
ous species [50]. In spite of the similar abundance of methanogenic archaea in faeces and the
rumen as determined by qPCR, the faecal archaeal population was dominated by Methanocor-
pusculum rather than Methanobrevibacter.

Similarly, no comparisons have been made previously regarding oral and ruminal samples,
indeed no ruminant oral microbiota analysis using modern cultivation-independent analysis
appears to have been published. Two types of oral sample were investigated, namely buccal
fluid (swabs) and grab samples of regurgitated digesta (boluses). Both would be extensively
contaminated by saliva, thus preventing an estimation of absolute microbial abundances. How-
ever, it was envisaged that the microbial communities might be similar to each other, at least
on a proportional basis. It emerged that the bacterial community of bolus samples was more
similar to the ruminal digesta than buccal swab samples, presumably due to a distinct gingival
microbiota that mixes with ruminal microorganisms derived from regurgitated food. The
apparently high abundance of ciliates detected in swabs using qPCR was unexpected, and it
remains to be established if the qPCR picked up non-protozoal sequences or, as suggested by
the sequence analysis, there is genuinely a high proportion of Diplodinium in buccal swabs
compared to rumen samples, suggesting that Diplodinium colonises the mouth.

The suitability of buccal swabs or regurgitated digesta as an alternative to rumen sampling
will depend on the microbial communities being investigated and the line of scientific enquiry.
Typically, the influence of environment, specifically diet, on the composition and function of
the ruminal microbiome [15,51-53] and direct or indirect associations with animal perfor-
mance traits [54-56] have been investigated. In the present experiment, the basal ration was
supplemented with various sources of fatty acids differing in chain length and degree of satura-
tion and used as means to test the robustness of alternative proxies. Inclusion of lipid supple-
ments in the diet affected microbial populations in rumen and in alternative oral samples
similarly. Compared with the control, lipid supplements had no effect (P > 0.05) on overall
ruminal bacterial, archaeal or protozoal communities, as confirmed by qPCR. However,
sequencing data indicated that MA completely changed the fungal community relative to all
other treatments, with lesser effects on archaea and protozoa. Dietary supplements of myristic
acid are known to lower methanogenesis in a dose dependent manner in lactating cows [57].
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Within the core microbiome of gut ecosystems, microbial species co-occurrence is begin-
ning to be understood [5,58]. Ruminal microorganisms do not exist in isolation and network
analyses of taxa interactions across complex and diverse communities may help to ascertain
the functional roles of uncultured microorganisms. Here, rumen-bolus-swab-faecal samples
were compared in building microbial co-occurrence networks. The similarity of networks in
alternative sampling types was measured by calculating the adjusted rand index between the
different cluster structures. The cluster structures themselves were directly derived from the
community detection of the coexistence networks. The results indicate that taxa coexistence
networks created from interactions between bacteria, archaea, ciliate protozoa and fungi in
bolus and swab samples were not a complete match to the rumen, while faecal networks had lit-
tle in common with the other sampling types. Similar composition but variance in the abun-
dance of individual microbial groups in samples collected from different sites influences the
strength of associations used in the network analysis. In addition, specific environments like
the mouth seem to harbour a set of specific microorganisms that may influence co-occurrence
results when compared to rumen composition.

Until now, most ruminal microbiota analysis has been descriptive rather than predictive,
although major studies are under way to change the situation regarding predictive approaches
for methane emissions and feed efficiency [43,54-56]. Here, QPCR enabled the calculation of
the archaea:bacteria ratio, which can provide a first approximation to predict methane emis-
sions by individual animals [46]. The archaea:bacteria ratio in oral samples was different from
corresponding rumen samples, and the slopes and intercepts of relationships between both
sampling sites were not close to unity. Nonetheless, the moderate correlation between archaea:
bacteria ratio in buccal and rumen samples suggest potential for screening purposes. The buc-
cal samples were more representative than bolus, despite the closer correspondence between
the observed microbial communities with bolus rather than buccal samples. No correlation
existed between the archaea:bacteria ratio in the rumen and faeces. Such observations indicate
that measurements of the faecal microbiome have little value as a biomarker of the rumen
microbial community.

Conclusions

The present experiments add significantly to previous observations [19,59] comparing different
methods of obtaining ruminal digesta from live ruminants. Although the taxa present in buccal
and bolus samples are similar to rumen samples, relative abundance varies. Nonetheless,
because the differences seem to be consistent across animals and treatments, the estimation of
microbial communities in these alternative samples may be useful for predictive purposes, such
as would be required for screening large animal cohorts or wild ruminants. In contrast, the
microbial composition in faeces has no resemblance to ruminal digesta or value as a biomarker
of rumen function.

Supporting Information

S1 Text. Supporting information, containing five Tables and two Figures. Table A.
Sequences of primers used for qPCR and amplicon sequencing. Table B. Within-diet signifi-
cances of sample type in qPCR analyses shown in Fig 1. Table C. Between-diet significances of
qPCR analyses shown in Fig 1. Table D. Number of filtered high quality sequences and the
average number of sequences obtained per individual animal for each sampling site and for
each microbial group, respectively. Table E. Archaea:bacteria ratio in different sample types
across treatments. Figure A. Scatter plot of changes in microbial abundance between the
rumen and the three alternative sampling sites calculated for each cow and each taxa,
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