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Abstract
The microbiome of the human body represents a symbiosis of microbial networks spanning multiple organ sys-
tems. Bacteria predominantly represent the diversity of human microbiota, but not to be forgotten are fungi,
viruses, and protists. Mounting evidence points to the fact that the ‘‘microbial signature’’ is host-specific and rel-
atively stable over time. As our understanding of the human microbiome and its relationship to the health of the
host increases, it is becoming clear that many and perhaps most chronic conditions have a microbial involve-
ment. The oral and gastrointestinal tract microbiome constitutes the bulk of the overall human microbial
load, and thus presents unique opportunities for advancing human health prognosis, diagnosis, and therapy de-
velopment. This review is an attempt to catalog a broad diversity of recent evidence and focus it toward oppor-
tunities for prevention and treatment of debilitating illnesses.
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Introduction
The interconnected network of microorganisms (bacte-
ria, viruses, fungi, and protists) that live in and on our
body take up residence mainly in the oral and nasal
cavities (oral microbiota), on the skin (skin micro-
biota), in the gastrointestinal (GI) tract (gut micro-
biota), and in females, in the genital tract (mostly as
vaginal microbiota) (Fig. 1).1–8 Mounting data show
that for each individual, the collective composition of
their microbiota (microbiome)3,9,10 is host-specific
and relatively stable over time.4,11–13

Of the different ecosystems of flora that inhabit the
human body, the gut microbiota system is emerging
as the preeminent ‘‘microbial organ’’ of study, and
there is great expectation that by better understanding
the complexity of the role of microbiota, our micro-
biome will become an indispensable and integral part
of our personalized healthcare in preventing and/or
treating diseases more effectively and in a more precise
and targeted clinical approach.3,14–19 Indeed, gaining a
better understanding of the gut microbiota system may
help to enable a revolution in precision medicine20,21
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across a wide range of diagnostic, preventive, and ther-
apeutic approaches.15,17

Of the 100 trillion or so microorganisms that make up
the human microbiome (accounting for 1–3% of a per-
son’s body weight),22,23 approximately half (1–2 kg) re-
side in the GI tract, which hosts the largest and most
diverse collection.22,24 A symbiotic host–flora relation-
ship25,26 has evolved between them and us, and as a re-
sult, we are dependent on our gut microbes to perform
many functions that are essential to our health and sur-
vival. They chemically transform and metabolize xeno-
biotics, which we take willingly (e.g., pharmaceuticals)
and/or unwillingly (e.g., environmental chemicals in
the air we breathe and extraneous additives in our
foods),27–29 they play a fundamental role in the induc-
tion, basic development, training, and function of our
immune system,26,30–33 and in the process of helping
us digest fibrous foods, they produce short-chain fatty
acids25,26,34 that inhibit inflammation35–37 and affect epi-
genetic regulation of gene expression by influencing
multiple regulatory mechanisms (Table 1). Importantly,
these regulatory mechanisms include acetylation of
DNA-associated histone proteins and methylation of
DNA.10,33,38–41

Consequently, it should not be surprising that gut
dysbiosis (also called dysbacteriosis or gut microbial
imbalance or maladaptation) can profoundly affect
our wellbeing,42 lead to the manifestation of neuropsy-
chiatric symptoms and conditions,43–46 and underlie a
multitude of immune-related disorders (gut–brain-
immune axis).47–50 Gut dysbiosis may also exacerbate
the progression of a number of common and often
chronic diseases. Allergies, atherosclerosis, colorectal
cancer, diabetes, inflammatory bowel disease, neuro-
logical conditions, and obesity are some examples.50–54

An association between aberrant mental states and di-
gestive disturbances was described by Hippocrates55 and
is the single consistently linked comorbidity reported
in the medical literature from ancient times to the
present.56 Diet figures prominently in maintaining or al-
tering the commensal homeostasis composition of the
GI microbiota,10,14,54,57–59 and the formulation of diets
rich in functional medicinal foods (food-drugs)60 is driv-
ing the emergent field of (neuro)regenerative nutri-
tion.61,62 Although the mechanistic pathways remain
mostly obscure, numerous studies show that through re-
ciprocal interactions with the gut–brain axis51,63–67 the
gut microbiome can influence neural development, cog-
nition, and behavior.43,46,54,68–70 In turn, changes in be-
havior can alter the gut microbial composition.43,67,71,72

Consuming the Mediterranean diet in particular has
been demonstrated to improve the health of patients
with various chronic diseases26,73–78 (presumably by al-
tering the gut microbiome)26,79–83 and can help miti-
gate with some degree of efficacy abnormal behavior
associated with neuropsychiatric conditions.68 Thus,
opting to incorporate a tailor-made diet plan in the
overall treatment of neurologic conditions, including
autism and schizophrenia, is increasingly common
practice.10,41,68,71,72,84–86 However, for microbiota to

FIG. 1. Interconnected network of
microorganisms: Major regions of the human
body where bacteria, viruses, fungi, and protists
live in or on.

Table 1. Symbiotic Host–Flora Relationship: Examples
of Important Roles That Gut Microbes Play in Functions
Essential to Human Health and Survival

Function Effect

Chemical transformation
and metabolism
of xenobiotics

Eliminate or transform environmental
chemicals in the air we breathe,
extraneous food additives,
pharmaceuticals

Immune system Induction, basic development, training and
function

Production of SCFAs Inhibit inflammation; influence multiple
regulatory pathways (thereby affecting
epigenetic regulation of gene
expression)

SCFA, short-chain fatty acid.
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play a clinical role in nutritional interventions for
maintaining (brain) health,68,87 a reliable diagnostic
determination of the gut microbial composition is
wanting88–91—hence, the focus of this forward-looking
review article.

Fecal-Derived Microbiota
The majority (*60%) of the bacterial species residing
in the GI tract (primarily the stomach, small intestine,
and large intestine)92 are reported to be unculturable.93

In addition, gut microbiota are not readily accessed,52

and characterization of intestinal microbiota currently
relies on analysis of the microbial composition in
patient-derived fecal (stool) samples,94,95 using DNA-
based culture-independent methods as a surrogate rep-
resentation.71,93,94,96,97 However, the method of sample
collection, laboratory handling, analysis, bioinformatic
processing of the data, and other factors can greatly af-
fect microbiome study findings.93,98–100 When a
healthy state of the gut microbiota is altered, opportu-
nistic bacteria such as Clostridium difficile (sometimes
referred to as C. diff.) can grow and cause an infection
that is difficult to treat.101,102 Orally administered cap-
sules containing an ecology of bacteria in spore form
enriched from stool donations obtained from healthy,
screened donors103,104 are being used in an increasing
number of clinical trials (www.clinicaltrials.gov). The
hope is that such bacterial preparations will be suc-
cessful in treating various conditions, including C.
difficile infection.103,105,106 The composition of fecal
microbiota as a valid surrogate representation of the
eubiotic (normal) gut microbiome system aimed to be
reconstituted71,103,104,107,108 is also gaining greater
scrutiny,104,109 particularly if antibiotics were taken
within 12 months before stool collection.98 Indeed,
because of resulting alterations in a patient’s micro-
biome, the impact of antibiotics on the life-saving po-
tential of powerful new therapeutic approaches,
including immuno-oncology checkpoint inhibitors and
other state-of-the-art immune system modulators, is
currently a hot topic in medical practice.110,111

Oral Cavity-Derived Microbiota
There is mounting evidence that the spectrum of mi-
crobial species living in the mouth is, both in diversity
and in composition, a close representation of the
microbiota inhabiting the upper GI tract. In a study
to evaluate the influence of proton pump inhibitors
on the luminal microbiota in the GI tract reported by
Tsuda et al.,112 an analysis of microbial samples taken

from the oral cavity (saliva), the stomach (gastric
fluid), and the colon (stools) of 45 individuals found
that the bacteria are similar in overall species richness
among the three microbiota irrespective of their differ-
ent habitats (Fig. 2). Importantly, however, the bacte-
rial composition of the fecal microbiota was shown to
be different from those of salivary and gastric fluid
microbiota.112 Furthermore, the interindividual vari-
ability of fecal microbiota was much higher compared
with that of salivary and gastric fluid microbiota as
might be expected with the colon habitat being com-
pletely different from the other two habitats with re-
spect to their biological and ecological features.112

Curiously, in a seemingly unconnected relationship,
the placental microbiome8 is also reported to share
similarity with that of the oral cavity and not those of
the more proximal vaginal or gut flora.113–116

Rapid advances in genome sequencing technologies
have given rise to user-friendly commercially avail-
able kits with buccal swabs for collecting genomic
material.118 (It is worth noting the current lack of stan-
dards, accessible control data, and variable results from
one commercial provider to another; nonetheless, our
expectation is that standardization and suitable compar-
isons of data and results would quickly follow once the
practice is adopted and dentists are more fully engaged.)
Located at the entrance of the digestive apparatus feed-
ing into the GI tract, the mouth (oral cavity) also provi-
des a convenient, accessible site for swabbing microbial
samples.118–121 The surfaces of teeth, however, accumu-
late distinct biofilms (Fig. 3) in comparison to mucosal
surfaces in the oral cavity,120,122,123 and some species
of microbes from dental biofilms may not be well repre-
sented in saliva alone, particularly dental caries-causing
bacteria.124,125 Nonetheless, a growing body of evi-
dence suggests that alterations in the oral microbiome
have potential in sentinel diagnostic and prognostic
applications.102,110,118,120–122,125–129

The healthy human mouth hosts a complex and du-
rable ecosystem of hundreds of different species of mi-
crobes that are largely living on the surfaces of teeth as
dental biofilms.122,130,131 When microbial homeostasis
in the oral cavity is perturbed (as with excessive and fre-
quent consumption of sugar), opportunistic pathogens
can selectively grow to dominate dental biofilms (dysbio-
sis) and predispose the oral cavity to inflammation, in-
fection, and tooth decay.132,133 Although rare, there are
reported cases in which a life-threatening bacterial infec-
tion from a tooth abscess has spread intracranially to the
brain.134 Better precedent is the apparent link between
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periodontal health and cardiovascular disease.135–137

Undeniably, antibiotics tend to be overused,138,139

and because antibiotics kill microbes indiscriminately,
their misuse in treating infections due to viruses and
not bacteria140 is a leading cause of antibiotic resis-
tance. During antibiotic therapy, unlike the oral and
upper gut microbiomes that resist induced perturba-
tion of their eubiotic state, the microbiota in the
colon habitat are vulnerable,98,112 and recent exposure
to antibiotics is an exclusionary criterion in screening
donors for fecal microbiota transplantation.104

An evolving alternative to antibiotics for selectively
killing odor-causing bacteria in the mouth, including
pathogenic bacteria that could seed growth in the gut,
is a technique that exposes the oral cavity to blue light
for a short period of time.141–144 The bacterial composi-
tions in the human oral and gut microbiomes are closely
related to each other.112 Interestingly, a corroborative
analogy from the agricultural sector comes into play
here. The oral microbiomes of dairy cattle are also sim-
ilar in constitution with respect to their individual gut
microbiomes, and oral samples are routinely taken as

FIG. 3. The major salivary glands and the periodontium.

FIG. 2. Relative Composition (%) of the major phyla of bacteria found in microbiota samples. Data for Oral
cavity, GI tract (gastric fluid), and GI tract (fecal) were from Tsuda et al.112 Skin microbiota composition was
obtained from van Rensburg et al.117 Genital tract (vagina) information, from Miles et al.,8 is highly variable
(Firmicutes > Proteobacteria > Bacteroidetes > Actinobacteria >> other) and is not plotted. GI, gastrointestinal.
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noninvasive proxies for assessing the health and poten-
tial pathogenic growth of bacteria in the microbial com-
munity of their rumen.145 Another major contributor to
antibiotic resistance is the widespread use of antibiotics
in animal feed146—prompting a legislated ban of all
food animal growth-promoting antibiotics in Sweden
that has been in effect since 1986. A little more than a
decade later the European Union also banned such anti-
biotic use as a ‘‘Precautionary Principle.’’147 However,
the total withdrawal of this class of antibiotics is now as-
sociated with a deterioration in animal health, including
increased diarrhea, weight loss, and mortality due to
Escherichia coli and Lawsonia intracellularis in early
postweaning pigs and clostridial necrotic enteritis in
broilers.147 To compensate, in the hope of providing a
means for reducing the superfluous use of such drugs
in our food-production chain in general, agricultural
businesses are investigating oral exposure to blue light
as a potential replacement for classical antibiotic prophy-
laxis in food animals.148,149

Leveraging the Oral Microbiome in Diagnosing
and Treating Disease
Although the oral cavity is continuously subjected to a
barrage of host and environmental insults, the oral
microbiome remains relatively stable over time in
healthy people.122,131,150,151 Given this fact, changes
in the profile of the oral microbiome may provide cor-
relative insight into the onset, progression, and recur-
rence of disease.102,118,120–122,125–129,152 For example, in
a retrospective clinical assessment, Zawadzki et al.152

examined the oral environment in different human
populations and compared and determined the patho-
genicity of the resident oral microbiota linked to health
complications in three distinct patient groups. A total
of 95 patients who required dental or surgical interven-
tions were evaluated for oral cavity microbiota risk fac-
tors associated with general or local infections. This
included individuals with masticatory system malfor-
mations (30 patients), recipients of kidney allografts
(30 patients), and a control group of subjects without
surgical needs (35 patients) treated conservatively.
Using standard microscopy and in vitro culture tech-
niques, differences were noted in bacterial strains be-
tween the patient groups requiring surgical treatment
and the generally healthy subjects from the control
group. The results of this study strongly support the
notion that preventive oral cavity microbiota assess-
ment should be performed on patients requiring oral
surgery because they are at risk of pathogenic bacterial

colonization and infections that have the potential to
spread. In general, an examination of the oral cavity
environment for infectious microbiota could help re-
duce surgical complications and also support and/or
guide the surgical treatment.

Additional evidence reinforcing similarities between
the oral and gut microbiomes is observed in their recip-
rocal exchange of bacterial pathogens. Diabetes is a sys-
temic chronic illness intimately associated with
periodontal disease.131,133,153 Dysbiosis of the oral
microbiome can lead to periodontitis,136,153 which pro-
motes pathogenic bacterial growth and facilitates dis-
semination of oral bacteria systemically.131,153 A
causative link between oral pathogens and changes in
the composition of the gut microbiota as well as inflam-
matory changes in various tissues and organs has been
demonstrated in mice.154–157 Conversely, emerging ev-
idence shows that diabetes, a chronic disease linked to
alterations in the gut microbiome,18,50,52,54,102,158,159

causes a pathogenic shift in the oral microbiome with
increased bone loss and inflammation in the mouth
that ultimately give way to periodontal disease.160 Sup-
pressing the growth of opportunistic pathogens in the
oral cavity is important in reducing the systemic dis-
semination of oral bacteria and crucial in the daily
practice of good oral hygiene, especially in the manage-
ment of diabetes.131,153 Oral photo-inactivation is a
promising nonobtrusive and nonantibiotic method
that may have advantage in this effort.144,149,161

While inconclusive and speculative, there are sporadic
reports in the literature that imply the chronic oral infec-
tion of periodontitis may be a risk factor for Alzheimer’s
disease (AD) and Parkinson’s disease (PD).162–164 Ele-
vated antibodies to periodontal disease bacteria in sub-
jects were observed years before the onset of symptoms
in people suffering from AD,164,165 inferring that there
was an increased translocation of bacteria and/or bacte-
rial toxins from the mouth into the bloodstream.162 An
investigative study by Pereira et al.163 identified differ-
ences in beta diversity (which quantifies community
composition similarity between samples) and abun-
dances of individual bacterial taxa in oral microbiota of
PD patients and control subjects. However, an increase
in the abundance of opportunistic oral pathogens was
detected in males, both with and without PD. Nonethe-
less, the measured differences argue for further explora-
tion of oral microbiota as a possible biomarker for PD.163

Rheumatoid arthritis (RA) is an inflammatory auto-
immune disease strongly associated with periodontal
disease.166 In a study by Zhang et al.,167 dysbiosis was
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evident in the gut and oral microbiomes of RA patients,
and there was a concordance between the two micro-
biomes. Differences in the gut and/or oral microbiomes
distinguished individuals with RA from healthy con-
trols and were used to stratify individuals according
to their response to therapy.167 The altered composi-
tion of the gut or oral microbiomes in individuals
with RA correlated with the prognosis and diagnosis
of the disease.167 Moreover, in two separate and unre-
lated double-blind randomized placebo-controlled
clinical trials168,169 aimed to evaluate the benefit of
oral probiotic supplements as an adjunct microbial
therapeutic intervention, the RA patients who received
daily capsules of the probiotic Lactobacillus casei 01
over a 2-month period had statistically significant im-
provements in their disease activity and inflammatory
status compared with controls.166,168,169

Concluding Remarks
Obesity is an expanding healthcare issue world-
wide170,171 and is a leading risk factor to a plethora of
chronic conditions and diseases associated with dysbio-
sis in the oral and gut microbiomes—cardiovascular,
cancer, diabetes, periodontitis, and RA are principal ex-
amples.18,50,59,172 Although the science exposing how
the human microbiome influences the development
and maintenance of the human body is still in the em-
bryonic stage, the existing data show unequivocally
that microbiota and our wellbeing are intimately
linked. As noted in this review, the gut microbiome is
the preeminent microbial organ of study for associa-
tion, diagnosis, prognosis, and treatment of disease.
Sampling the gut microbiota requires intervention for
direct access. The oral cavity microbiome is proving
to be a relevant surrogate representation of gut micro-
biota. The mouth is a psychologically more palatable
and more easily accessed body site for microbial sam-
pling by the patient as well as by the healthcare profes-
sional. With the ever increasing pressure to lower
healthcare costs, prevention of disease has the greatest
impact. Saliva and mucosal swabbing, including sam-
pling of dental biofilms, could be made part of the rou-
tine dental exam. This scenario is likely to become
common practice in preventive medicine, if not more
so than giving a blood-sample.173 Furthermore, capital-
izing on the growing insights in this field, both new
therapies and novel ways to make old therapies more
effective are likely to emerge. The human microbiome
may even find itself at the very center of the future of
medicine—precision, personalized, and ever safer and

more efficacious.4 The food industry is already shifting
toward developing microbiota-directed foods174 and
the U.S. Food and Drug Administration is considering
classifying these altered foods as medical foods that
may need to be regulated.174,175

In closing, we note that the cosmetic industry has
begun to explore the relationship between the human
microbiome and healthy skin to help correct skin mi-
crobe imbalances that are believed to play an underly-
ing role in skin conditions such as acne and eczema
as well as more minor maladies such as dryness and
wrinkles.23 Moreover, diabetic retinopathy, age-related
macular degeneration, glaucoma, and cataracts are eye
diseases that cause visual impairment and ultimately
blindness, affecting millions of people worldwide.176

The eye is an immunologically privileged site, and dys-
regulation of the endogenous microbiota can have pro-
found effects on host immune function.177 The surface
of the eye is believed to harbor its own unique and immu-
noprotective commensal ecosystem (ocular micro-
biome), and it has barely begun to be explored.178–180

Although the encompassing mechanisms and path-
ways are not fully recognized or elucidated, and there
is much work yet to be done as we apply our growing
understanding of the human microbiome, microbiome
medicine (the potential of the microbiome in treatment
and diagnosis) clearly has clinical implications that no
longer can be ignored.17,181,182
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