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Abstract: Myeloperoxidase (MPO) belongs to the family of heme-containing peroxidases, produced
mostly from polymorphonuclear neutrophils. The active enzyme (150 kDa) is the product of the
MPO gene located on long arm of chromosome 17. The primary gene product undergoes several
modifications, such as the removal of introns and signal peptides, and leads to the formation
of enzymatically inactive glycosylated apoproMPO which complexes with chaperons, producing
inactive proMPO by the insertion of a heme moiety. The active enzyme is a homodimer of heavy
and light chain protomers. This enzyme is released into the extracellular fluid after oxidative stress
and different inflammatory responses. Myeloperoxidase is the only type of peroxidase that uses
H2O2 to oxidize several halides and pseudohalides to form different hypohalous acids. So, the
antibacterial activities of MPO involve the production of reactive oxygen and reactive nitrogen
species. Controlled MPO release at the site of infection is of prime importance for its efficient
activities. Any uncontrolled degranulation exaggerates the inflammation and can also lead to tissue
damage even in absence of inflammation. Several types of tissue injuries and the pathogenesis of
several other major chronic diseases such as rheumatoid arthritis, cardiovascular diseases, liver
diseases, diabetes, and cancer have been reported to be linked with MPO-derived oxidants. Thus, the
enhanced level of MPO activity is one of the best diagnostic tools of inflammatory and oxidative
stress biomarkers among these commonly-occurring diseases.

Keywords: myeloperoxidase; leukocytes; inflammation; oxidative stress; chronic diseases;
disease biomarker

1. Introduction

Myeloperoxidase (MPO) (EC 1.11.1.7) is a member of subfamily of peroxidases. It is most abundantly
expressed in immune cells, such as neutrophilic polymorphonuclear leukocytes (neutrophils)
and lymphocytes [1,2], monocytes, and macrophages [3], and is also produced in other body
cells. Myeloperoxidase is stored in cytoplasmic membrane-bound azurophilic granules and, during
stimulation, these granules are secreted out to the extracellular space by degranulation or
exocytosis [4,5]. The complete biochemical mechanism of neutrophil degranulation is not yet clear,
but oxidative stress plays a key role in the release of MPO from these cells [6,7].

Neutrophils are well known white blood cells (WBCs) playing a pivotal role in innate immunity
and frontline defense against microbial attacks [8]. In addition to MPO, several other proteins or
enzymes are present in neutrophils which also show antimicrobial properties, e.g., defensins, serine
proteases, cathepsin G, alkaline phosphatase, lysozyme, NADPH oxidase, collagenase, lactoferrin,
cathepsin, and gelatinase, etc. [9]. Among these antimicrobial agents, MPO is the most abundant and
constitutes 5% dry weight of neutrophils and 25% of the azurophilic granular proteins [10].
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Normally, neutrophils degranulate at the infection site to combat different types of microbial
activities and help to cure diseases. However, any unusual expression and release of MPO from
activated neutrophils intensifies the inflammation and tissue damage and may result in several other
diseases, even in the absence of infection [8,11].

This review article mainly focuses on the recent advances in the biochemical and the pathological
aspects of myeloperoxidase and its significance as a disease biomarker in some commonly occurring
chronic diseases.

2. Biochemistry of Myeloperoxidase

The MPO gene is located on the long arm segment q12–24 of chromosome 17 and the primary
transcriptional product of this gene consists of 11 introns and 12 exons [12,13]. After some modifications
like signal peptide removal and glycosylation with mannose-rich side chains, it produces apoproMPO [14].
This protein product is enzymatically inactive and further forms complexes with some chaperons
like calreticulin and calnexin in the endoplasmic reticulum [15,16]. Enzymatically inactive, proMPO
is formed from apoproMPO by the insertion of a heme moiety [17]. Furthermore, the removal of
some N-terminal amino acids results in the production of 72–75 kDa protein, which undergoes further
cleavage to produce α and β subunits. The α-subunit is heavy, 57 kDa, and consists of 467 amino acids,
while the β-subunit is light, 12 kDa, and consists of 112 amino acids (Figure 1).

Figure 1. Sequential steps involved in the synthesis of myeloperoxidase. MPO: myeloperoxidase.

Mature MPO consists of cationic homodimer heavy-light chain protomers and is about 150 kDa by
weight. Each heavy subunit of mature MPO is covalently linked with a heme group and a mannose-rich
moiety [18,19]. On the basis of the size of heavy chains in MPO, three isoforms have been observed:
MPO I, MPO II, and MPO III [20]. A calcium-binding site is also present in MPO, which is very
important for active site structure and function [21].
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2.1. Activation and Release of Myeloperoxidase by Neutrophils

Although the coordination of MPO release by the degranulation of neutrophils is not fully
understood, evidence supports that increased levels of oxidative stress by reactive oxygen species
(ROS) and the activation of Src and p38 mitogen activated protein (MAP) kinase signaling pathways
performs prominent roles in the process [22,23].

A fine coordination is necessary between different biochemical pathways, such as neutrophil
activation, the production of ROS by superoxide generating NADPH oxidase, and MPO release
by exocytosis. All of these organized reactions lead to the elimination of the bacterial invasion.
Invading bacteria initiate enhanced production of H2O2 by superoxide dismutase (SOD), which is
utilized by MPO for the production of chloramine and hypochlorite. Both of these products are highly
toxic for the invading bacteria [8,24]. This biochemical phenomenon is also called respiratory burst.
A clear illustration of the role of MPO is also observed in MPO knockout mice, which are highly
susceptible to infections by Klebsiella and Candida and show persistent inflammation [25,26].

During bacterial infection, various other pro-inflammatory factors also trigger the release of
MPO and ROS from neutrophils. During bacterial infection, one of the important mediators for this
cascade is formylated peptide, which also works as a chemoattractant. Neutrophils are activated by
this chemoattractant via formyl peptide receptor (fPR), a G protein-coupled receptor [27]. Some more
proteins involved in antibacterial activities include phospholipases and protein kinases, such as
mitogen-activated protein kinases (MAPK) and protein kinase C (PKC) [28–30]. During different
pathological situations, or by the influence of several drugs, this signaling cascade gets impaired and
finally leads to neutrophil dysfunction. These aberrations can be detrimental to host defense against
several diseases or disease-causing microorganisms [27,31,32].

2.2. Reaction Mechanism and Functions of Myeloperoxidase

Activated neutrophils, monocytes, and some tissue macrophages release MPO at the sites of
inflammation, using H2O2 to oxidize several substrates, such as halides (Cl−, Br−, and pseudohalides
like thiocyanate (SCN−). This reaction leads to the formation of hypohalous acid, hypochlorous acid
(HOCl−), hypobromous acid (HOBr−), and hypothiocyanous acid (HOSCN) [33]. MPO is able to interact
with diverse ionic, atomic, and molecular entities via the interface with H2O2, including HOCl−, hydroxyl
radicals, singlet oxygen, ozone, chloramines, and aldehydes [34–36]. These species are potent oxidants,
which under normal and controlled circumstances are toxic to several microorganisms and play an
important role in the immune system [37–39]. However, any excessive or unregulated production of
theses oxidants can lead to damage of host cells and result in several diseases.

Myeloperoxidase produces reactive oxidants and other free radicals either through its peroxidase
cycle or through a halogenation cycle, depending up on the substrate availability [40]. It is the
only type of peroxidase that facilitates the oxidation of chloride to HOCl− by consuming H2O2.
During its reaction cycles, MPO is converted to many transitional forms with different half-lives.
Myeloperoxidase contains ferric heme (MPO-Fe(III)) in its resting state. During the peroxidase cycle,
compound I is formed by the reaction with H2O2 [41]. In the absence of Cl−, the intermediate
(MPO-Fe(IV)=O) in the presence of peroxide is reduced back to the ferric state in two sequential steps.
The first step leads to the formation of compound II. This compound is reduced to compound III by
second equivalent AH2 [42,43]. During the halogenation cycle, MPO-compound I exclusively oxidizes
Cl− to HOCl− and no further intermediates are formed in this reaction, as compound I gets converted
directly to its native form (Figure 2).

The fate of H2O2 as a substrate of MPO via peroxidation or chlorination reaction depends upon
the concentration of chloride and the reducing substrates. A number of sources such as NADPH
oxidase, xanthine oxidase, and nitric oxide synthase (NOS) are the sources of H2O2 for the MPO
reaction, which also enhance the oxidative potential of H2O2 [44].
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A strong antimicrobial cascade of reactions (respiratory burst), takes place in the presence of
NADPH oxidase [45]. The initial products of this reaction are superoxide anions (O2

−), produced as
NADPH + O2 → O2

− + NADP+ + H+.

Figure 2. Reaction mechanism of myeloperoxidase in the presence of different substrates. XO: xanthine
oxidase; NO: nitric oxide; SOD: superoxide dismutase; Cl−/SCN: chloride/thiocyanate.

During normal conditions, the antibacterial activities of MPO involve the production of different
reactive oxygen and nitrogen species (ROS and RNS, respectively). These ROS and RNS also cause
lipid peroxidation, protein nitration, and protein carbomylations. Myeloperoxidase plays a role in the
oxidation and chemical modifications of different lipoproteins as well. In addition to this, MPO also
mediates protein nitrosylation, dityrosine crosslinking, and 3-chlorotyrosine formation [46,47].

With the help of H2O2, this enzyme also oxidizes tyrosine to the tyrosyl radical. Neutrophils use
HOCl− and the MPO-derived tyrosyl radical as cytotoxic agents against different types of bacteria
and other pathogens [48]. As a signaling molecule, HOCl can activate several pathways, which later
induce cellular senescence or apoptosis [49].

The polycationic protein nature of MPO helps it to bind several negatively charged surfaces
of pathogens and causes cell membrane destruction, which ultimately leads to cell death [50].
In addition to pathogens, this enzyme can bind other cell surfaces like epithelial cells, fibroblasts,
endothelial cells, macrophages, platelets, neutrophils, and low-density lipoproteins (LDLs) and very
low-density lipoproteins (VLDLs) [51–59]. The binding of this enzyme to these cell surface alters some
functional properties; for example, interaction with neutrophil integrins causes enhanced tyrosine
phosphorylation of some proteins. This activates protein tyrosine kinase, which results in degranulation
and leads to respiratory burst [58]. The binding of MPO to platelets causes the reorganization of the
platelet cytoskeleton, and thus alters the aggregation properties [60]. MPO also oxidizes a variety of
aromatic compounds by a one-electron mechanism to produce substrate radicals (R·) [61,62].

In contrast to activation, different types of cytoplasmic enzymes are indirectly inactivated by
myeloperoxidase-derived HOCl, due to its high chemical reactivity. Some of these enzymes include
creatine kinase, lactate dehydrogenase, hexokinase, glyceraldehyde-3-phosphate dehydrogenase, etc. [63].

In addition to the many positive roles of myeloperoxidase discussed above, this enzyme has
some drawbacks as well. Carbon nanotubes are used as drug delivery vehicles by some clinicians,
but myeloperoxidase remains a significant hurdle as this enzyme suddenly breaks down these vehicles,
thus limiting its applications [64].
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2.3. Measurement of Myeloperoxidase Activity

Myeloperoxidase assays have been widely reported in the literature. However, no proper unanimity
for most standard assays has been established. The complications are due to the fact that the substrates of
MPO are the same as general peroxidase substrates. In addition to this, myoglobin and hemoglobin also
show some peroxidase activity, thus interfering with the actual results. Unfortunately, no comparisons
have been made between different myeloperoxidase assays, so standardization and validation are the first
priorities in confirming the results from various studies [65]. Myeloperoxidase can be detected by flow
cytometry, immunohistochemistry, or cytochemical staining. Some of the common assays of MPO are
briefly described below.

Myeloperoxidase assays have been commonly performed by using different substrates, such
as tetramethylbenzidine (TMB), 10-acetyl-3,7-dihydroxyphenoxazine (ADHP), and o-dianisidine
dihydrochloride. These substrates react in the presence of H2O2 and form different colored products,
which are estimated colorimetrically [66–68].

Myeloperoxidase assays have also been checked through chlorination activity evaluated with
39-(p-aminophenyl) fluorescein (APF) and 39-(p-hydroxyphenyl) fluorescein in the presence of H2O2.
The fluorescence by this assay is checked by spectrofluorometry [65]. Myeloperoxidase activity has also
been assayed by bromide-dependent chemoluminescence using luminol in the presence of H2O2 [69].

Nowadays, the most common method of MPO measurement is via commercially-available
enzyme-linked immunosorbent assay (ELISA) kits. The MPO level is measured by sandwich ELISA
with a monoclonal antibody [70]. Human plasma diluted samples, a control, and a standard are
pipetted in wells coated with biotin-conjugated mouse anti-human MPO monoclonal antibodies
bound to streptavidin–horseradish peroxidase (HRP) and incubated on a vibrating shaker at room
temperature. After some time, the contents of the wells are washed and replaced with TMB as
a substrate, and then incubated for a specific time. This reaction mixture is followed by a stop
solution. Absorbance is determined by an ELISA reader and the quantity of MPO is interpreted from
the calibration curve of the standard. The assay is sensitive (the lower limit of detection may be
0.026 ng/mL) [71].

2.4. Inhibitors and Activators of Myeloperoxidase

Even though a strong correlation has been found between atherosclerosis, inflammatory diseases,
and MPO release, little work has been done to inhibit MPO to suppress these diseases. Several naturally
occurring compounds possess inhibitory activities against MPO, including polyphenols, melatonin,
flavonoids, etc. [72].

The MPO reaction is inhibited by general peroxidase inhibitors azide and benzoic acid
hydrazide-containing compounds, but the proper mechanism of its inhibition is still unknown [73].
There are some specific inhibitors of MPO, such as 4-amino benzoic acid hydrazide (4-ABH) [74].
Ceruloplasmin, an acute phase plasma protein produced from hepatocytes and activated macrophages,
is a physiologic inhibitor of MPO [75]. Niacin can also inhibit cellular ROS production and MPO
release through some complex signaling mechanisms [76].

In addition to the above compounds, some naturally occurring anti-inflammatory, antioxidant,
and antihistaminic compounds possess inhibitory activities against MPO. These compounds include
nonsteroidal anti-inflammatory drugs (NSAIDs), e.g., diclofenac, ferulic acid, caffeic acid, resveratrol,
indomethacin, flufenamic acid, chalcones, and gallic acid [77–79].

As compared to inhibitors, little is known about the activators of MPO. This type of peroxidase
is present as an inactive or partially active form in resting granulocytes and its activation is
instigated by different factors. Some of the activators discovered include granulocyte macrophage
colony stimulating factor (GM-CSF), N-formyl-methionyl-leucyl-phenylalanine (fMLP), and phorbol
mysristate acetate [80,81].

albertcochet
Texte surligné 

albertcochet
Texte surligné 



Med. Sci. 2018, 6, 33 6 of 21

3. Role of Myeloperoxidase in Different Diseases

In addition to the antipathogenic or bactericidal role of MPO-derived HOCl during normal
conditions, under some pathological circumstances the overproduction of these oxidizing agents also
causes oxidative damage of proteins and DNA in host cells. Several types of tissue injuries and the
pathogenesis of various chronic diseases such as atherosclerosis, cancer, renal disease, lung injury,
and multiple sclerosis. Additionally, Alzheimer’s and Parkinson’s diseases have been reported to
be directly/indirectly linked with MPO-derived oxidants [8] (Table 1). Thus, the enhanced level of
MPO is one of the best inflammatory and oxidative stress markers among these commonly occurring
diseases [82,83].

Table 1. Brief etiology and the direct/indirect involvement of MPO in different types of diseases.

No. Name of Disease Brief Etiology and Possible Role of MPO Reference

1 CVD and
atherosclerosis

Raised level of MPO causes RBCs deformability, accumulation of cholesterol and
its esters, ruptures in atherosclerotic plaque [8,60]

2 Obesity Neutrophil infiltration and activation of MPO in adipose tissue [84,85]

3 Neurodegenerative
diseases

Release of neurotoxic mediators by many factors spearheaded by MPO from
neurons, astrocytes, microglia cells [11]

4 Cancer MPO-derived ROS/RNS react with major biomolecules causing mutagenesis,
gene polymorphism, SNPs, acrolein-protein adduct formation [86–88]

5 Diabetes/diabetic
retinopathy

Neutrophil activation and the release of MPO in vessels and retina, upregulation
of leukocyte adhesion molecules, and increased production of anti-MPO
antibodies

[89,90]

6 Renal diseases MPO-initiated HOCl-modified proteins in glomerular peripheral basement
membranes [91]

7 Liver diseases Neutrophil infiltration, hepatic fibrosis by activation of Kupffer cells cause
production of oxidants, impaired signaling events [92,93]

8 Lung injury Activation and expression of proinflammatory cytokines and mediators by MPO [5]

9 Cystic fibrosis Bacterial infiltration, especially Pseudomonas aeruginosa and infiltrating
neutrophils [94]

10 Multiple sclerosis MPO-generated ROS cause axonal damage by proteolytic enzymes and cytotoxic
oxidants by activated immune cells and glia [95]

11 Alzheimer’s
disease

Increased production of oxidants like advanced glycation end products,
o,o′-dityrosine, lipid oxidation products, protein carbonyls, oxidized DNA,
and 3-nitrotyrosine in neuronal tissues proposed by increased expression of MPO

[96]

12 Parkinson’s disease Upregulation of MPO and its byproduct, 3-chlorotyrosine, in ventral midbrain [97]

13 Tuberculosis Enhanced MPO expression along with TNF-α and IL-12 activation [98]

14 Asthma Excessive MPO release from neutrophils in lower respiratory tract cells [99]

15 Rheumatoid
arthritis

Inflamed synovium intervened by lymphocytes and neutrophils leads to the
release of proinflammatory mediators [100,101]

16 Chronic sinusitis Enhanced level of MPO and IL-8 in sinuses [102]

17 Peptic ulcer Free radicals formation initiated by MPO [103]

18 Gastric ulcer Neutrophil infiltration and the release of MPO into gastric mucosal tissue [104]

19 Duodenal ulcer MPO and other pro-inflammatory agents [105]

20 Colitis Increased activity of MPO and pro-inflammatory mediators like IL-1β and
TNF-α [106–108]

21 Pancreatitis Increased MPO activity causes increased ROS that leads to this disease [109]

22 Chronic
periodontitis Increased MPO activity in gingival crevicular fluid [110]

MPO: myeloperoxidase; CVD: cardiovascular disease; RBCs: red blood cells; ROS: reactive oxygen species;
RNS: reactive nitrogen species; SNP: single nucleotide polymorphism; IL: interleukin; TNF-α: tumor necrosis
factor-α. The descriptions of some of the diseases through the perspective of MPO are reviewed in this paper.
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3.1. Inflammation

Some of the common examples of diseases and conditions with chronic inflammation are:
tuberculosis, asthma, rheumatoid arthritis, chronic sinusitis, chronic hepatitis, peptic ulcer, ulcerative
colitis, and chronic periodontitis. Myeloperoxidase is now considered as a new biomarker of
inflammation in these diseases as well as other ailments like ischemic heart disease and acute coronary
syndrome. This enzyme is released into the extracellular medium during different inflammatory
processes [111]. During inflammation, vascular permeability is increased by the activation of various
inflammatory mediators, which results in the influx of immunoglobulins and serum proteins at the
site of inflammation [112,113]. This cascade of inflammatory process also motivates the migration of
polymorphonuclear neutrophils, which result in the release of MPO [114,115].

Inflammatory processes are also triggered by lipid peroxidation and the synthesis of eicosanoids.
Cytochrome P450, lipoxygenase, and cyclooxygenase also play a prominent role in these events.
Myeloperoxidase generates reactive intermediates that stimulate lipid peroxidation. This oxidoreductase
can oxidize tyrosine and nitrite to form tyrosyl radical and nitrogen dioxide (·NO2), respectively.
These reactive intermediates can oxidize lipids in plasma and the cell membrane [116]. The lipoprotein
phospholipid peroxidation of the membrane is linked to their interference, leading to cellular
dysfunctions. Lipid peroxidation can be a normal physiological activity or a potential contributor
to the pathophysiological consequence of acute and chronic inflammatory diseases [117,118].

Myeloperoxidase also leads to the formation of tyrosyl radical, formed when MPO initiates
lipid peroxidation, also leading to the formation of phenolic cross-links on proteins. A typical
molecular fingerprint, protein-bound dityrosine, is enhanced during atheroma and other sites of
inflammation [119]. In addition to this, lipid peroxidation also occurs by nitrogen dioxide (·NO2),
which is formed by MPO enzymatic action. Myeloperoxidase is also indirectly involved in the
post-translational modification of some proteins, resulting in the formation of nitrotyrosine, which can
also occur in the presence of ·NO2 [120,121].

3.2. Rheumatoid Arthritis

Elevated MPO levels have been observed in several inflammatory diseases including rheumatoid
arthritis (RA) [122]. Rheumatoid arthritis is well characterized by chronically inflamed synovial
joints with some destruction of cartilage and bones [123]. Several factors have been proposed for this
disease, among which oxidative stress is a leading hypothesis [124,125]. Inflamed synovium is often
intervened by B and T lymphocytes, macrophages, and neutrophils. The intrusion of these cells in the
synovium during RA leads to the release of multiple pro-inflammatory mediators. The degranulation
of neutrophils leads to the release of enzymes and peptides, leading to respiratory burst and oxidative
stress [126–129]. The overproduction of ROS is a potential tissue-damaging agent that is further
formed by the cascades of reactions by HOCl− produced by the activated neutrophils present in
synovial fluid [101,130]. This was verified in the inflamed cartilage of patients suffering from RA [102].
Currently, a firm hypothesis is that the enhanced levels of MPO in inflamed cartilage of RA are causally
associated with the lifelong disease progression.

3.3. Cardiovascular Diseases and Atherosclerosis

Myeloperoxidase gained special importance in 2001, due to its association with coronary artery
diseases (CAD). Since that time, MPO has been considered a circulating marker of related diseases such
as acute coronary syndrome, CAD, and chronic heart failure [131–135]. Elevated levels of circulating
MPO are observed in patients with coronary artery diseases, unstable angina, and acute myocardial
infarction [8,136–138]. Plasma MPO concentration was reported to be higher in myocardial infarction
(MI) patients (55 ng/mL) as compared to control subjects (39 mg/mL) [139].

Circulating MPO also shows a link with red blood cells (RBCs)’ rigidity index in several
patients with combined ischemic heart disease. This enzyme induces some changes in RBCs’ cellular
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morphology and biophysical properties like plasma membrane fluidity, transmembrane potential,
cell size, hemolysis sensitivity, and cellular deformability. This enzyme also alters the intracellular
Ca2+ level in addition to causing some changes in band 3 proteins and glycophorins of the RBC
membrane [60].

Atherosclerosis is the major cause of cardiovascular diseases (CVD). Neutrophils and monocytes
play a key role in atherosclerosis, leading to chronic inflammatory problems. Different events and
sequences occur during CVD, which include endothelial dysfunction besides the formation and rupture
of atherosclerotic plaque [140]. In the arterial wall subendothelial region, all of these stages occur
during inflammation, which ultimately leads to the accumulation and deposition of altered lipids [141].

Atherosclerosis leads to the accumulation of cholesterol and cholesteryl esters on arterial walls,
which are derived from LDL. In addition to this, LDL retention on these walls triggers an immune
response, resulting in a cascade of production of oxidants and inflammation [142,143]. Plasma LDL
interacts with circulating MPO, which has been reported to be higher in patients suffering from
atherosclerosis [144]. It has been reported that in some patients undergoing hemodialysis, HOCl reacts
with LDL, which promotes atherogenesis [91,145]. Macrophage exposure to HOCl−-LDL results in an
accumulation of cholesterol and its esters as well as the production of lipid-rich foam cells [146].

3.4. Obesity

The infiltration of neutrophils in adipose tissue is an initial and persistent step for the advancement
of diet-induced obesity [84,147]. This infiltration of neutrophils leads to increased MPO expression,
as recent reports have also revealed a higher level of MPO in obese adults [148–150]. Thus, with this
concern of obesity, prolonged low-grade inflammation combined with cardiovascular risk factors
probably occur in parallel. A proper mechanism to justify the regulation of MPO activity in cases of
obesity requires further research [151,152].

To investigate the possible role of MPO in obesity, Wang et al. [148], during his research on animal
models, found that MPO-deficient mice showed resistance to progression towards diet-induced obesity.
In another study, isolated neutrophils were treated with an inhibitor against MPO action, and this
prevented insulin resistance in obese mice. All of these observations indicate the probability that MPO
targets white and brown fat and is a chief contributor to the progression of inflammation-induced
obesity, but this assumption also requires further investigation [148].

In humans, a strong positive correlation has been found between obesity and diabetes with
leukocytosis [153–155], as the plasma MPO level was found to be raised in prepubertal obese
children [85]. A study of MPO as an early biomarker of inflammation and obesity in prepubertal obese
children indicated an MPO level of about 22 µg/L, as compared to normal weight children with an MPO
level of about 14 µg/L. Thus, these studies support the hypothesis that serum myeloperoxidase is a
suitable and potential biomarker for assessing various cardiovascular risks among obese patients [156].

3.5. Neurodegenerative Diseases

Oxidative stress is also proposed to be responsible for the release of neurotoxic mediators
commanded by MPO derived from cells like neurons, astrocytes, and activated microglia, as well as
peripheral inflammatory cells [11]. In the brain, of the different neurotoxic oxidants, HOCl is a stable,
highly reactive, and predominant one. This acid is involved in a number of neurodegenerative diseases,
including stroke, epilepsy, multiple sclerosis, Parkinson’s and Alzheimer’s diseases, and multiple
sclerosis, etc. [157].

In addition to inflammation and oxidative stress, MPO is related to depression, which is an
emotional disorder affecting a vast majority of the world’s population [158]. Furthermore, patients
suffering from bipolar disorders are prescribed anti-inflammatory drugs, such as lithium and valproate,
indicating some links with MPO [159]. Still, the complete mechanism of the role of myeloperoxidase
biochemistry in neuronal diseases remains unknown.
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3.6. Diabetes/Diabetic Retinopathy

Diabetes mellitus and its complication, diabetic retinopathy (DR), are also known as diseases
with subclinical inflammation. During diabetic retinopathy, retinal structural and biochemical
alterations cause the activation of neutrophils [160]. The increased expression of various types of
growth factors and cytokines including TNF-α occurs due to biochemical modifications during DR.
Inflammatory mediator priming causes MPO translocation and interaction with anti-MPO antibodies.

In the vessels of diabetic retina, the upregulation of leukocyte adhesion molecules occurs,
and leukocytes are also observed in the lumen of human microaneurysm. Furthermore, the vitreous
samples of patients with DR show elevated levels of CD4/CD8 and T lymphocytes [90].

Chronic inflammation during diabetic retinopathy is sustained by cytokine-producing
B-lymphocytes. There is a correlation between the activity of proliferative DR (PDR) and increased
lymphocyte infiltration [161]. Increased vascular permeability due to leukocytosis leads to retinal
abnormalities, endothelial injury, and capillary occlusion [162–164]. Neutrophils and monocytes
can be activated by proteinase-3 antineutrophilic cytoplasmic antibody (PR3-ANCA) and MPO
antinutrophilic cytoplasmic antibody (MPO-ANCA) to release acute inflammatory mediators, which
causes endothelial cell injuries [165,166]. Priming by proinflammatory factors, such as cytokines,
TNF-α, and microbial products like bacterial formyl peptides, etc., triggers circulating neutrophils to
express more ANCA antigens.

3.7. Liver Diseases

Among several types of liver disease, such as fibrosis, necrosis, inflammation, and steatosis,
alcoholic cirrhosis denotes a major cause of mortality with an estimated 3.8% of all worldwide
deaths [167,168]. Cirrhosis is closely related to immune dysfunctions, and thus to the inability of the
host to protect against various infections [169]. In several types of liver injuries, for example alcoholic
steatohepatitis in human beings or in animal models, neutrophils contribute to the pathogenesis of
cirrhosis [170]. The infiltration of neutrophils in the liver is good for predicting disease [93], as these
cells increase the intracellular oxidative stress during liver injury [171]. In addition to this, the stellate
macrophages or Kupffer cells located in the liver also synthesize MPO. The activation of these cells
results in hepatic fibrosis, which is proposed to be developed by the local release of oxidants and
cytokines [92,172].

Neutrophils employ their favorable effects through different factors such as granulopoiesis [144,173],
the production of hepatocyte growth factor [174], and collagen degradation. Granulocyte-colony
stimulating factor (G-CSF) therapy has been observed to be beneficial in cases with severe alcoholic
hepatitis [175]. Patients with cirrhosis have impaired neutrophilic ROS production, as well as
phagocytotic and microbicidal activities [176–178]. Post-hepatic cirrhosis has also been observed to be
closely related to diminished ROS production in some liver transplant recipients [179]. The mechanism
of impaired signaling events of neutrophils in relation to alcoholic cirrhosis is not fully understood.
Several researchers have observed an erroneous MAPK-dependent phosphorylation of p47phox,
an important component of NADPH oxidase [30].

3.8. Cancer

The knowledge of the precise biochemical relationship between the inflammatory response and
specific malignancy is a vast field to be understood, although growing evidence points to links between
the relationships of MPO, inflammation, and cancer [88,180,181]. Cancer progression advances by the
biochemical alterations of different biomolecules and genes by various oxidative species, ultimately
produced through MPO.

DNA damage can be caused by oxidants directly or indirectly produced by MPO, which can lead
to mutagenesis [86]. An abnormal MPO expression and greater risks of different forms of cancers are
directly associated with MPO gene polymorphism [182]. In the promoter region of this peroxidase gene,
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single nucleotide polymorphisms (SNPs) can possibly affect transcription and protein levels [87,183].
In addition to this, the substitution of thymidine for cytosine in codon 569 causes the substitution of an
amino acid from arginine to tryptophan, which may also cause some genetic defects of MPO [184].

In addition to gene polymorphism, MPO induces cancer through the activation of genotoxic
intermediates and procarcinogens through an indirect implication of MPO [185,186]. The metabolism
of unsaturated fats and some amino acids like serine and threonine can form byproducts, like acrolein,
which in turn form acrolein-protein adducts [187]. In humans, these new protein adducts can transform
colon tumors from benign to malignant states [188]. Still, little information is available about such
proteins that form adducts with acrolein or their role in tumor progression.

Several reports are available about the relationship between breast cancer and increased
serum MPO level as compared to control groups. The promotion of this cancer is also enhanced
by inflammatory leukocytes, which produce ROS, chemo- and cytokines, proteases, histamine,
and other mediators [189]. Various types of DNA damages and genomic instability are instigated by
MPO-synthesized ROS [180,190]. Thus, in premenopausal women suffering from breast cancer, MPO
acts as an efficient marker [191]. Furthermore, risks of the development of cancer are directly linked to
the endogenous production of high MPO levels [192].

Myeloperoxidase is a hallmark enzyme of acute myeloid lineage and the clinical relevance of the
circulating MPO level in acute myeloid leukemia (AML) patients showed higher plasma MPO levels
(range 1.0–9514 ng/mL) as compared to control subjects (range 3.5–20.6 ng/mL) [193].

3.9. Cystic Fibrosis

Cystic fibrosis (CF), a disease of the respiratory tract, is characterized by severe bacterial infections,
especially Pseudomonas aeruginosa, as well as very large numbers of infiltrating neutrophils [194].
Neutrophils are also thought to contribute to lung damage instead of eliminating bacteria from the
respiratory tract [94]. Cystic fibrosis patients’ sputum contains high concentrations of MPO and human
neutrophil elastase (HNE), and these levels correlate with the severity of the lung disease [195,196].
The clear mechanism for the release of inflammatory mediators like HNE, extracellular DNA, and MPO
from neutrophils during CF is not known. However, neutrophil extracellular traps reveal a potential
mechanism for the release of these mediators [197].

4. Myeloperoxidase Deficiency

Several studies have shown that, in the USA and Europe, partial or complete MPO deficiency is
relatively common among the human population (affecting 1 in 2000 to 1 in 4000 people) [198,199].
However, there is a geographic heterogeneity between the frequencies of hereditary MPO deficiency
in different populations. For example, these findings are compared to the reported 1 in 55,000 in
Japan [200–202]. Generally, MPO deficiency results in a modest increase of either inflammatory
problems or infectious complications [203]. MPO-deficient neutrophils exhibit impaired bactericidal
and candidacidal activities against Staphylococcus aureus and many species of Candida [204,205].

The deficiency of MPO is a hereditary problem that may also lead to immune deficiency [206].
In addition, several different types of autoantibodies have been observed to be raised against MPO
in various types of vasculitis. The three most clinically prominent vasculitis forms of this type are
granulomatosis with polyangitis, and eosinophilic granulomatosis with polyangitis (EGPA) and
microscopic polyangitis. Autoantibodies against neutrophils, also known as ANCAs, have also been
detected in the perinuclear region staining [207].

5. Conclusions

Myeloperoxidase enzyme is the most abundant pro-inflammatory biomarker present in
neutrophilic granulocytes. It is released from these cells by proinflammatory factors and during
oxidative stress at the site of infection to combat different types of microbial activities. The antibacterial
activities of MPO involve the production of different reactive oxygen and nitrogen species.
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Myeloperoxidase also plays a role in the chemical modifications of different lipoproteins, protein
nitrosylation, tyrosyl radical formation, and dityrosine crosslinking, etc. Myeloperoxidase gained
special importance as a well-known biomarker due to its role in a number of inflammatory
diseases including rheumatoid arthritis, cardiovascular diseases, neurodegenerative diseases, diabetic
retinopathy, liver diseases, cancer, and transplant rejection. As the activation of macrophages and
neutrophils may occur in any type of inflammation, significant future research is required to precisely
understand the role of MPO in these diseases. Different assays have been conducted to check the level
of MPO in several diseases due to the lack of a specific substrate, but no comparisons have yet been
made between these assays. Thus, it is very important to standardize the assays of MPO with some
specific substrate with the aim of understanding the reference range of MPO in different diseases.
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