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Abstract

Obesity is associated with significantly increased cardiovascular (CV) risk and mortality.
Several molecular mechanisms underlying this association have been implied, among which
the intestinal barrier has gained a growing interest. In experimental models of obesity,
significant alterations in the intestinal barrier lead to increased intestinal permeability,

Key Words
» endotoxemia
» obesity

» cardiovascular diseases

favoring translocation of microbiome-derived lipopolysaccharide to the bloodstream.
This has been shown to result in a two- to threefold increase in its serum concentrations,
a threshold named ‘metabolic endotoxemia’ (ME). ME may trigger toll-like receptor
4-mediated inflammatory activation, eliciting a chronic low-grade proinflammatory and
pro-oxidative stress status, which may result in high CV risk and target-organ damage.

In this review, we discuss the potential molecular implications of ME on several CV risk

factors, such as obesity, insulin resistance, dyslipidemia, and oxidative stress, as well as
its potential impact on the development of CV target-organ disease.
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Introduction

Cardiovascular (CV) diseases remain the leading cause of
death in the western world; being estimated, they will be
responsible for more than 23 million deaths in 2030
(WHO 2002). Despite the advances made in CV risk factor
treatment and control, the incidence of CV disease has
not significantly reduced (Padua 2002).

Changes in nutritional status in western countries
seem to contribute significantly to CV risk and mortality
(Otaki 1994, Poirier & Eckel 2002). Lifestyles and eating
habits promote an exponential increase in obesity, which
is associated with an array of metabolic complications
(dyslipidemia, insulin resistance, and type 2 diabetes
mellitus (T2DM)) that foster a significant risk for CV
disease (Poirier & Eckel 2002).

Obesity is associated with significantly increased CV
risk and mortality (Otaki 1994, Poirier & Eckel 2002, WHO
2002). However, the molecular mechanisms underlying
this association remain largely unknown. Several factors
have been implied, among which the intestinal barrier
has gained a growing interest (Backhed et al.
2004). In experimental models of obesity, significant
alterations in the intestinal barrier occur (Cani et al.
2007a). In these models, structural intestinal changes
lead to increased intestinal permeability, favoring trans-
location of microbiome-derived lipopolysaccharide (LPS)
to the bloodstream (Pirlich et al. 2006, Cani et al.
2007a). This results in a two- to threefold increase in its
serum concentrations, a threshold named ‘metabolic
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endotoxemia’ (ME; Cani et al. 2007a). ME may trigger toll-
like receptor (TLR) 4-mediated inflammatory activation,
eliciting a chronic low-grade proinflammatory and pro-
oxidative stress status associated with obesity, which may
result in CV target-organ damage (Suganami et al. 2007,
Puppa et al. 2011). ME may thus represent a molecular link
between obesity and increased CV risk.

In this context and in a translational perspective, novel
questions arise regarding the intricate relationship between
metabolism, innate immunity, and global CV risk. A better
understanding of the molecular link between the human
intestinal microbiome and host’s innate and inflam-
matory responses might thus open the way to innovative
therapeutic strategies for CV risk reduction.

Intestinal changes and ME

In physiological conditions, the intestinal epithelium acts
as a continuous barrier to avoid LPS translocation;
however, some endogenous or exogenous events may
alter this protective function (Cani et al. 2008).

Weight gain has been associated with a higher gut
permeability and subsequent systemic exposure to mildly
increased LPS circulating levels. Erridge et al. (2007)
demonstrated that a high-fat diet promotes LPS absorption
across the intestinal barrier, increasing its plasma levels
by two to three times, a threshold defined as ME. These
data are supported by previous studies that had also found
that higher concentrations of fatty acids impair intestinal
barrier integrity (Velasquez et al. 1993, Levels et al. 2001).

Two mechanisms of LPS absorption have been
proposed. Ghoshal et al. (2009) showed in an in vitro
model of human epithelial adenocarcinoma cells that the
formation of quilomicron promotes LPS absorption. Other
suggested mechanisms include LPS absorption through
internalization by intestinal microfold cells (Hathaway &
Kraehenbuhl 2000) and enterocytes, involving TLR4 and
myeloid differentiation protein-2 (MD-2; Neal et al. 2006).

Moreover, some bacteria can induce and/or modulate
the expression of genes involved in the barrier function in
host epithelial cells (Hooper & Gordon 2001). It has been
demonstrated that the introduction of a high-fat diet in
mouse models resulted in a decreased expression of genes
involvedin the barrier function, namely zonula occludens 1
and occludin genes (Cani et al. 2008).

ME and innate immune response

In order to maintain the delicate relationship of mutual-
ism with the host, intestinal bacteria need to be present
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above the epithelial surface or within the intestinal
mucus, with those penetrating the epithelial barrier
having to be immediately eliminated.

How exactly gut distinguishes between pathogens and
commensal agents is a question for which the answer
remains unclear. One hypothesis is that TLRs are
compartmentalized in the basolateral aspects of entero-
cytes or inside epithelial cells (Hornef et al. 2003). This
hypothesis suggests that a deeper bacterial-epithelial
contact might be necessary in order to activate the host’s
innate immune response (Kelly & Conway 200S5).

The starting point for innate immunity activation is
the recognition of conserved structures of bacteria, viruses,
and fungal components through pattern-recognition
receptors (PRRs; Philpott & Girardin 2004). TLRs are PRRs
that recognize microbe-associated molecular patterns
(MAMPs; Turnbaugh et al. 2007) such as several bacterial
structures of Gram-negative outer membrane (e.g., LPS)
and components of Gram-positive cell wall as lipoteichoic
acid or peptidoglycan (Philpott & Girardin 2004). TLRs
are transmembrane proteins containing extracellular
domains rich in leucine repeat sequences and a cytosolic
domain homologous to the IL1 receptor intracellular
domain (TIR domain) (Chow et al. 1999).

The LPS-sensing machinery is constituted primarily by
a LPS-binding protein (LBP), a glycosylphosphatidylinosi-
tol-anchored monocyte differentiation antigen (cluster of
differentiation 14 (CD14)), an accessory protein (MD-2),
and TLR4 (Bosshart & Heinzelmann 2007). The primary
role of LBP is the transportation of aggregates of
circulating endotoxin, and the delivery of these molecules
to CD14, resulting in cell activation, or to lipoproteins for
hepatic clearance (Stoll et al. 2004). CD14 is a PRR with an
important role in immunomodulation of proinflamma-
tory signaling in response to LPS and other bacterial
products (Kitchens & Thompson 2005). It is also present in
a soluble form (sCD14), which derives from the secretion
of CD14 or the enzymatic cleavage of the membrane form
(Turnbaugh et al. 2007). The accessory protein MD-2,
which is associated with TLR4 on the cell surface, and
appears to bind to TLR4 and endotoxin, is like CD14, also
known to be a critical element in this receptor complex
giving it responsiveness to LPS (Nagai et al. 2002). Due to
lack of a transmembrane domain to CD14, TLRs are
required for subsequent sinalization (Chow et al. 1999).

The pathway is primarily activated by lipid A, a LPS
MAMP from the outer membrane of Gram-negative
bacteria, which binds TLR4 and its co-receptors CD14
and MD-2. The TLR4 is thus activated, causing the
recruitment of adaptor molecules through interactions
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Figure 1

LPS-induced TLR4 activation induces the transcription of pro-inflammatory
mediators, via the recruitment of adaptor molecules such as MyD88 and TRIF.
LPS is mainly sensed through the activation of TLR4 by the LBP-LPS trigger
complex. CD14 and MD-2 are critical elements in this receptor complex giving
it responsiveness to LPS. TLR4 activation provokes the recruitment of four
adaptor molecules, including MyD88 and TRIF. MyD88 activates the IKK
complex via IRAK kinases/TRAF recruitment, lately leading to NFkB diffusion
to the nucleus. TRAF6 activation also promotes MAPK activation and nuclear
translocation, also inducing the transcription of pro-inflammatory cytokines.
NFkB transcription also occurs in a MyD88-dependent pathway, via
TRIF-mediated activation of the kinases TBK1 and RIP1. Full color version of
this figure available via http:/dx.doi.org/10.1530/JME-13-0079

with the TIR domain. There are four TLR4-TIR interacting
adaptor molecules: MyD88; TIR domain-containing
adaptor protein; TRIF-related adaptor molecule; and
TRIF (TIR domain-containing adaptor inducing IFN-o)
(Medzhitov 2001; Fig. 1).

MyD88 recruits IRAK4, IRAK1, and IRAK2. IRAK
kinases then phosphorylate and activate the protein
TRAF6, which in turn polyubiquinates the protein TAK1
as well as itself in order to facilitate binding to IKKp.
On binding, TAK1 phosphorylates IKKB, which
then phosphorylates IkB causing its degradation and
allowing NFkB to diffuse into the cell nucleus and
activate transcription (Lu et al. 2008; Fig. 1). TRAF6
activation also promotes MAPK-mediated AP-1 activation
and nuclear translocation, inducing the transcription

of proinflammatory cytokines. MyD88-independent intra-
cellular pathways include TRIF-mediated activation of the
kinases TBK1 and RIP1. The TRIF/TBK1 signaling complex
phosphorylates IRF3 allowing its translocation into the
nucleus and production of type I interferons. Moreover,
RIP1 activation promotes TAK1 polyubiquination and
activation and NF«B transcription in the same manner as
the MyD88-dependent pathway (Werner & Haller 2007).
The major proinflammatory mediators produced by the
TLR4 activation in response to endotoxin (LPS) are TNFa,
IL1B and IL6, which are also elevated in obese and insulin-
resistant patients (Parker et al. 2007).
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The gut epithelium is an efficient barrier that prevents absorption of LPS
derived from Gram-negative gut microbiota. Obesity, high-fat diet,
diabetes, and NAFLD are associated with higher gut permeability leading
to metabolic endotoxemia. Probiotics, prebiotics, and antibiotic treatment
can reduce LPS absorption and plasmatic levels. LPS in the bloodstream is
transported by lipoproteins and LBP. In the liver, LPS is cleared by
hepatocytes and excreted in the bile. LPS promotes hepatic insulin
resistance, hypertriglyceridemia, hepatic triglyceride accumulation, and
secretion of pro-inflammatory cytokines promoting the progression of
fatty liver disease. In the endothelium, LPS induces the expression of
pro-inflammatory, chemotactic, and adhesion molecules, which promotes
atherosclerosis development and progression. In the adipose tissue, LPS
induces adipogenesis, insulin resistance, macrophage infiltration, oxidative
stress, and release of pro-inflammatory cytokines and chemokines.

Full color version of this figure available via http://dx.doi.org/10.1530/
JME-13-0079
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Given the association between ME and proinflammatory
activation, several potential mechanisms have been
proposed to link the gut microbiome with CV risk
(Cai et al. 2005, Cani et al. 2007a,b; Fig. 2; Table 1).

ME and nutritional status

The development of obesity is the result of complex
interactions between genetic and environmental factors,
which are only partially understood. In this context, the
gut microbiota has been recently proposed to be an
environmental factor involved in the control of body
weight and energy homeostasis by modulating plasma
LPS levels (Backhed et al. 2007, Cani et al. 2007a).

Experimental evidence showed that axenic mice
(raised in the absence of microorganisms) had 40% less
total body fat than mice raised with normal gut microbiota
(conventionalized), even if their caloric intake was higher
than in conventionally raised animals (Backhed et al.
2004). Surprisingly, the conventionalization of axenic
mice with microbiota previously harbored in nonaxenic
mice was followed by a significant increase in fat mass
(Backhed et al. 2004); moreover, mice conventionalized
with microbiota from lean non-germ-free animals resulted
in a fat mass gain of 40% (Backhed et al. 2004) and those
conventionalized with the microbial community of
genetically obese (0b/ob) mice gained up to 60%, although
feed consumption was reduced in the latter (Turnbaugh
et al. 2007). This difference in weight gain induced
by conventionalization may be justified by different
microbiomes and derived metabolites in lean and
obese mice.

In order to understand how gut microbiota influences
weight gain, germ-free and conventionalized mice were
fed for 8 weeks with a high-fat, high-carbohydrate western
diet. It was observed that germ-free mice gained signi-
ficantly less weight and fat mass than conventionalized
mice and were protected against western diet-induced
insulin resistance (Backhed et al. 2007). This result
suggests that dietary fats alone might not be sufficient to
cause overweight and obesity, suggesting that a bacterially
related factor might be responsible for high-fat
diet-induced obesity.

Interestingly, Cani et al. demonstrated that after
4 weeks of high-fat feeding, mice exhibited a two- to
threefold increase in circulating LPS levels, the so-called
‘ME’. This was accompanied in high-fat-fed mice by a
change in gut microbiota composition, with reduction in
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Bifidobacterium and Eubacterium spp. (Cani et al. 2007a). In
line with these observations, ME was shown to be present
in genetically obese leptin-deficient mice (Brun et al.
2007). To further understand the effects of ME on weight
gain, LPS was chronically infused in wild-type mice in
order to achieve ‘ME'. Interestingly, these animals showed
increased body weight to the same extent as a 4-week
high-fat diet regimen, with visceral and subcutaneous
adipose depots increasing about 40 and 30% respectively.
This increase in body weight was not explained by
excessive energy intake (Cani et al. 2007a).

In humans, it was also shown that meals with high-fat
and high-carbohydrate content (fast-food style western
diet) were able to decrease bifidobacteria levels and
increase intestinal permeability and LPS concentrations
(Ghanim et al. 2009, 2010, Fava et al. 2013). Moreover, it
was demonstrated that, more than the fat amount, its
composition was a critical modulator of ME (Laugerette
etal. 2012). Very recently, Mani et al. (2013) demonstrated
that LPS concentration was increased by a meal rich in
saturated fatty acids (SFA), while decreased after a meal
rich in n-3 polyunsaturated fatty acids (n-3 PUFA).

In fact, this effect seems to be due to the fact that some
SFA (e.g., lauric and mystiric acids) are part of the lipid-A
component of LPS and also to n-3 PUFA’s role on reducing
LPS potency when substituting SFA in lipid-A (Munford &
Hall 1986, Kitchens et al. 1992). To clarify the mechanisms
of ME-induced innate immunity activation, mice lacking
TLR4 co-receptor CD14 were studied. We have shown
that CD14 KO mice when exposed to a high-fat high-
simple carbohydrate diet show attenuation in CV and
metabolic complications of obesity compared with wild-
type mice (Roncon-Albuquerque et al. 2008). Moreover,
when chronically injected with LPS, CD14 KO mice
do not show body weight gain and increased visceral
and subcutaneous adipose depots, as observed in wild-
type animals (Cani et al. 2007a). Taken together,
these experimental results suggest a pivotal role of
CD14-mediated TLR4 activation in the development of
LPS-mediated nutritional changes.

Studies have also been conducted where gut micro-
biota was manipulated by means of antibiotic treatment.
This resulted in ME reduction and attenuation of obesity,
fat mass development, mRNA concentration of adipose
tissue inflammatory markers, and metabolic parameters of
obesity in both high-fat-fed and ob/ob mice (Cani et al.
2008, Membrez et al. 2008). Similar results were observed
when an endotoxin inhibitor was administered for
4 weeks to ob/ob mice (Cani et al. 2008).
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Other manipulations of gut microbiota include the
use of pre- and probiotics. Prebiotics show efficacy in
protecting against high-fat diet-induced ME, also reducing
body weight gain and fat mass (Cani et al. 2007b). This
suggests a link between gut microbiota, western diet, and
obesity and indicates that gut microbiota manipulation
can beneficially affect the host’s weight and adiposity.
Although the data derived from animal models seem to
support this link, the cause—effect relationships remain
unclear and a limited number of in vivo trials have been
performed so far. In one of the few cross-sectional studies
performed in humans, endotoxemia was independently
associated with energy intake but not fat intake in a
multivariate analysis (Amar ef al. 2008).

On the other hand, epidemiological studies strongly
support that obesity and hypercholesterolemia paradoxi-
cally improve survival in cardiac cachexia, and thus, it
would not be surprising that a hypercaloric and hyper-
proteic western diet could have some benefits in these
cachectic patients (Song et al. 2006). This hypothesis has
been tested in an animal model of monocrotaline-induced
cardiac cachexia, being shown that in the group that
consumed a western-type diet, the extent of myocardial
remodeling and apoptosis were lower when compared
with the group consuming a normal diet (Lourenco et al.
2011). The western-type diet group also had a more
favorable inflammatory profile (lower myocardial NF«kB
transcription factor activity, endothelin-1 and cytokine
overexpression and Surprisingly,
western-type diet attenuated cardiac cachexia and inflam-
mation and improved survival, suggesting a relationship
between the diet, inflammation, and CV risk in cachexia
(Lourenco et al. 2011).

concentrations).

ME and insulin resistance

It has been proposed that ME and dietary fats might also
impair carbohydrate metabolism up to insulin resistance
and, lately, T2DM.

In vitro studies showed that preadipocytes mediate
LPS-induced insulin resistance in primary cultures of
newly differentiated human adipocytes. Chung et al.
(2006) demonstrated in vitro that endotoxemia activates
pro-inflammatory cytokine/chemokine production via
NFkB and MAPK signaling in preadipocytes and decreased
peroxisome proliferator-activated receptor y activity and
insulin responsiveness in adipocytes.

In order to study the relationship between ME and
insulin resistance, LPS was continuously infused for
1 month in wild-type mice with a s.c. minipump to

Molecular link between obesity 51:2 R58
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achieve ‘ME’. These animals developed the same meta-
bolic abnormalities as those usually induced by a high-fat
diet, including hyperglycemia, hyperinsulinemia, and
hepatic insulin resistance (Cani et al. 2007a). Moreover,
CD14 KO mice were resistant to high-fat diet and chronic
LPS infusion, showing hyperinsulinemia and insulin
resistance significantly later when compared with wild-
type animals. Of note, intrahepatic accumulation of
triglycerides was totally blunted in CD14 KO mice. CD14
KO mice also showed hypersensitivity to insulin when fed
a normal diet, suggesting a role for CD14 in the
modulation of insulin sensitivity even in physiological
conditions (Cani et al. 2007a).

Interventions manipulating the gut microbiome
might also affect glycemic metabolism. Backhed et al.
(2004) noticed that gut colonization of germ-free mice with
cecum-derived microbes resulted in insulin resistance with
no impact in chow consumption or energy expenditure.

A few studies in humans have also related ME to
impaired glucidic metabolism. Creely et al. (2007) showed
that T2DM patients have mean values of LPS that are 76%
higher than healthy controls. Plus, van der Crabben et al.
showed that even low doses of LPS are able to induce
changes in glucose uptake in lean humans, which
presented enhanced insulin sensitivity in the first few
hours after the injection, followed later by its significant
reduction. Furthermore, circulating insulin and glucose
levels were increased (Anderson et al. 2007, van der
Crabben et al. 2009).

LPS exposure resulted in reduced hepatic glucose
production and improved glucose clearance in healthy
volunteers (van der Crabben et al. 2009, Raetzsch et al.
2009). This effect might be dependent on the LPS-induced
release of glucagon, GH and cortisol, which inhibit
glucose uptake, both peripheral and hepatic (Agwunobi
et al. 2000).

Finally, LPSs also seem to induce ROS-mediated
apoptosis in pancreatic cells. Du et al. showed that
ROS-mediated LPS-induced apoptosis in insulin-secreting
cells from a rat pancreatic cell line (ins-1) occurs in both
dose- and time-dependent manners. This effect may lead
to subsequent defective pancreatic cell function and
decreased insulin secretion (Du et al. 2012).

ME and dyslipidemia

Recent evidence has been linking ME with dyslipidemia,
increased intrahepatic triglycerides, development, and
progression of alcoholic and nonalcoholic fatty liver
disease (NAFLD; Manco et al. 2010).
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LPS is transported in the bloodstream by its specific
transport protein (LBP) and by lipoproteins to hepatocytes
(Netea et al. 2004). The hepatocytes, rather than hepatic
macrophages, are the cells responsible for its clearance,
being ultimately excreted in bile (Read et al. 1993). All the
subclasses of plasma lipoproteins can bind and neutralize
the toxic effects of LPS, both in vitro (Eichbaum et al. 1991)
and in vivo (Harris et al. 1990), and this phenomenon
seems to be dependent on the number of phospholipids
in the lipoprotein surface (Levels et al. 2001). LDL seems
to be involved in LPS clearance, but this antiatherogenic
effect is outweighed by its proatherogenic features (Stoll
et al. 2004).

LPS produces hypertriglyceridemia by
mechanisms, depending on LPS concentration. In animal
models, low-dose LPS increases hepatic lipoprotein (such as
VLDL) synthesis, whereas high-dose LPS decreases lipo-
protein catabolism (Feingold et al. 1992, Sanz et al. 2008).

Some authors have pointed out that the high capacity
of LPS binding to HDL suggests that HDL might provide
additional protection against LPS-induced inflammation,
like in sepsis or in the proatherogenic and diabetogenic
effect observed in ‘ME’ (Barcia & Harris 2005). Reinforcing
this hypothesis, it was observed that an infusion of
reconstituted HDL 3.5 h before a LPS challenge (4 ng/kg)
markedly reduced LPS-induced release of TNFa, IL6, and
IL8 in humans (Pajkrt et al. 1996). Inversely, in a
hypolipidemic rat model, LPS produced a three- to fivefold
greater increase in TNFa levels when compared with
controls (Feingold et al. 1995).

When a dose of LPS similar to that observed in ME was
infused in humans, a 2.5-fold increase in endothelial
lipase was observed, with consequent reduction in total
and HDL. This mechanism may explain low HDL levels in
‘ME’ and other inflammatory conditions such as obesity
and metabolic syndrome (Stoll ef al. 2004).

It is known that the high-fat diet and the ‘ME’ increase
intrahepatic triglyceride accumulation, thus synergisti-
cally contributing to the development and progression of
alcoholic and NAFLD, from the initial stages characterized
by intrahepatic triglyceride accumulation up to chronic
inflammation (nonalcoholic steatohepatitis), fibrosis, and
cirrhosis (Manco et al. 2010). The increase in fatty acids
in hepatocytes enhances the hepatic expression of TLR4
and TLR2, as well as its co-receptors CD14 and MD-2
(Maher et al. 2008). This favors activation by SFAs, LPSs, or
both, enhancing the progression from fatty liver to
steatohepatitis (Mencin et al. 2009). On the other hand,
LPS activates Kupffer cells leading to an increased
production of ROS and pro-inflammatory cytokines

several
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like TNFa. This mechanism has been shown to promote
the progression of fatty liver disease to steatohepatitis
(Hritz et al. 2008).

Recently, it has been demonstrated that patients with
NAFLD have a reduced expression of the tight junction
protein zonula occludens 1, thus presenting increased
intestinal permeability (Miele et al. 2009). It was also
found that these patients’ degree of intestinal permeability
was proportional to their degree of steatosis. These
changes in intestinal permeability have also been shown
to promote ME (Miele et al. 2009).

The administration of prebiotics and probiotics in
various models of liver disease, including NASH and
LPS-induced liver failure resulted respectively in the
inhibition of the inflammatory activity and improvement
of NAFLD (Li et al. 2003) and in the prevention of hepatic
damage (Ewaschuk et al. 2007).

ME, low-grade inflammation, and oxidative stress

Low-grade inflammation has been linked to CV risk, with
several studies pointing out that increased levels of pro-
inflammatory cytokines (C-reactive protein, soluble
vascular cell adhesion molecule 1, and intercellular adhesion
molecule-1) are associated with higher CV mortality
(Jager et al. 1999, Becker et al. 2002, Danesh et al. 2004).

ME seems to participate in this molecular pathway,
acting as a trigger to the low-grade inflammatory response.
In a previously described animal model, Cani et al.
changed gut microbiota by means of antibiotic treatment
to demonstrate that changes in gut microbiota could be
responsible for the control of ME and low-grade inflam-
mation. The authors first showed that high-fat diet mice
presented with ME, which positively and significantly
correlated with plasminogen activator inhibitor (PAI-1),
IL1, TNFa, STAMP2, NADPHox, MCP-1, and F4/80
(a specific marker of mature macrophages) mRNAs (Cani
et al. 2008). Subsequently, in a different interventional
study, it was also shown that prebiotic administration
reduces intestinal permeability to LPS in obese mice and is
associated with decreased systemic inflammation when
compared with controls. Changing the gut microbiota
through an intervention was associated with significantly
reduced Pai-1, Cd68, Nadph oxidase (NadpHox), and
inducible nitric oxide synthase mRNA concentrations
and tended to decrease TIr4 and Tnfa mRNA concen-
trations (Cani et al. 2008).

LPS also seems to affect oxidative stress, which has also
been implied in CV morbidity and mortality. We have
shown that allelic variants of (Cu-Zn)SOD, an enzyme
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belonging to the superoxide dismutase family and that
play a major role in detoxification of ROS and protection
against oxidative stress, are associated with increased risk
of death from CV causes (sudden death, fatal myocardial
infarction, or stroke) (Neves et al. 2012). Gibbs et al. (1992)
demonstrated that lung endothelial MnSOD (both
mRNA and protein) was increased by LPS treatment in
LPS-sensitive mice, but not in LPS-resistant mice.
Conversely, TNFa increased MnSOD mRNA levels in both
models, LPS-sensitive and resistant. On the other hand, LPS
exposure did not affect either macrophage or endothelial
cell Cu/ZnSOD mRNA/protein levels (Gibbs et al. 1992).
These findings suggest that the mutation that shapes LPS
susceptibility probably exerts its effect in a cell-specific way
(Gibbs et al. 1992). Tsan et al. (2001) additionally
demonstrated that induction of MnSOD by LPS is mediated
by mCD14 and TLR4 in murine macrophages.

Cani et al. also found that high-fat diet mice presented
with not only ME but also higher levels of inflammatory
markers, oxidative stress, and macrophage infiltration
markers. Plus, positive and significant correlations were
found among these variables. This suggests that important
links between gut microbiota, ME, inflammation, and
oxidative stress are implicated in a high-fat diet situation
(Cani et al. 2008). Plus, the authors showed that the
antibiotic treatment completely abolished these effects,
normalizing not only the increase in inflammatory
markers but also normalizing lipid peroxidation in the
visceral depots and the oxidative stress markers STAMP2
and NADPHox on visceral and subcutaneous adipose
depots. The mRNA concentrations of chemokines MCP-1
and F4/80 were increased in high-fat mice and totally
normalized by the antibiotic treatment.

These results are also supported by previous studies
that have described that high-fat feeding is associated with
adipose tissue macrophage infiltration (F4/80-positive
cells) and increased levels of chemokine MCP-1,
suggesting a strong link between ME, proinflammatory
status, oxidative stress, and, lately, increased CV risk
(Weisberg et al. 2003, Kanda et al. 2006).

ME and CV disease

As described above, ME relates to several known CV risk
factors and lately promotes low-grade chronic inflam-
mation and oxidative stress, two recognized factors of CV
disease. Thus, it is not surprising that ME is also associated
with real target-organ CV disease. Discussed as follows, LPS
has been shown to promote atherosclerosis, a hallmark of
CV disease.

Molecular link between obesity 51:2 R60
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The effect of LPS on the CV system was demonstrated
in patients with chronic kidney disease (CKD), in which
ME correlated with the CV disease burden (systemic
inflammation and cardiac injury) and with a higher risk
of mortality. The authors suggest that CKD patients,
namely those undergoing hemodialysis, experience sys-
temic circulatory stress and recurrent regional ischemia
that contributes to increased LPS translocation through
the intestinal barrier (McIntyre et al. 2011).

In order to specifically demonstrate the effect of LPS
on the development of atherosclerosis, Lehr et al. showed
that LPS-treated animals exhibited significantly acceler-
ated atherosclerosis compared with control animals, using
an animal model of hypercholesterolemic rabbits, which
received either repeated i.v. injections of endotoxin or a
self-limiting cutaneous Staphylococcus aureus infection.
Endotoxin-treated animals exhibited significantly acce-
lerated atherosclerosis compared with control animals
(Lehr et al. 2001).

In humans, the Bruneck study was the first specifically
assessing the impact of subclinical endotoxemia on the
development of carotid atherosclerosis. The authors
showed that markers of systemic inflammation such as
circulating bacterial endotoxin were elevated in patients
with chronic infections and were strong predictors of
increased atherosclerotic risk (Kiechl et al. 2001).

Several molecular mechanisms explain the role of LPS
in atherosclerotic plaque formation and progression. As
previously described, under endotoxemic conditions,
endothelial cells release proinflammatory, chemotactic,
and adhesion molecules, drawing T lymphocytes to form
the fibrous cap of atherosclerotic lesions (Larsen et al.
1989) and inducing monocyte transmigration, adhesion
on the endothelial monolayer, differentiation into macro-
phages, and plaque formation (Gerszten et al. 1999).
Endotoxin can also induce activation and up-regulation
of other molecules involved in cell-cell and cell-matrix
interaction and communication, such as B2-integrins,
selectins, platelet/endothelial cell adhesion molecule-1,
and platelet-activating factor (Shen et al. 1998).

Plus, Wiesner et al. (2010) suggested that cooperative
engagement of NFkB transcription factors by mmLDL and
LPS results in additive/synergistic upregulation of pro-
inflammatory genes in macrophages, thus constituting a
mechanism of increased transcription of inflammatory
cytokines within atherosclerotic lesions.

As a TLR4 ligand, LPS has been suggested to induce
atherosclerosis development and progression, via a
TLR4-mediated inflammatory state. Michelsen et al.
(2004) showed that mice lacking TLR4 presented with
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reduced aortic atherosclerosis, lower levels of circulatory
proinflammatory cytokines, and decreased lipid content
in the plaques. On the other hand, Miller et al. (2009b)
used a zebrafish model of early stages of atherosclerosis,
which demonstrated that lack of TLR resulted in a
significant decrease in the in vivo rate of lipidic accumu-
lation on macrophages present on vascular lesions.

In humans, TLR4 mutations have been shown to be
associated with a decreased response to inhaled LPS
(Arbour et al. 2000). Plus, a reduced risk of carotid
artery atherosclerosis development (Kiechl et al. 2002)
and the appearance of acute coronary events have been
observed in association with its Asp299Gly polymorphism
(Ameziane et al. 2003, Boekholdt et al. 2003).

Conclusion

The intestinal microbiome gained growing interest as a
modulator of inflammation and oxidative stress, factors
increasingly implicated in the pathophysiology of CV
disease. According to the actual evidence, some authors
have suggested that it might have itself a role as a CV risk
marker. Nevertheless, several questions remain to be
answered (Box 1).

First, the factors influencing LPS translocation are not
completely understood and might be addressed in future
studies. As discussed before, high-fat and high-carbo-
hydrate content (fast-food style western diet) increase
intestinal permeability and LPS concentrations. Thus, it
would not be surprising that other characteristics of
dietary components might also play a role in LPS
translocation (pH, salt or sucrose content, other dietary
nutrients). Very recently, it has been found that high
levels of trimethylamine N-oxide, a product of phospha-
tidylcholine digestion by intestinal bacteria, are associated
with increased risk of incident major CV events (Tang et al.
2013). The study and modulation of other dietary
component effects might lead to novel additional research
lines on this field.

Box 1 Future research lines

1) Other factors influencing LPS absorption/translocation
a. Environmental factors
i. Other dietary characteristics and components
(e.g., pH, salt content, sucrose content, other
dietary nutrients); therapeutic options
modulating these components
b. Genetic factors
2) Identification of other LPS-mediated pathways leading
to CV disease
3) Epidemiological studies

Molecular link between obesity 51:2 R61
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Plus, genetic determinants may also play a role in LPS
translocation; in intestinal bowel disease, some genetic
factors (such as mutation of CARD1S5) are involved in the
impairment of intestinal barrier function and high
mucosal permeability (Schreiber 2006). In CV disease,
mutations leading to increased gut permeability can also
lead to a higher probability of developing ME in response
to the environmental factors such as nutrition. This could
explain why CV disease develops differently in patients
exposed to the same environmental conditions, thus
integrating the genetic environmental concepts.

Finally, the relationship between ME and CV disease
shall be further clarified by epidemiologically robust
evidence. The Bruneck study was the first to evoke a
clinical association between LPS levels and CV risk
(Wiedermann et al. 1999). More recently, the Wandsworth
Heart and Stroke Study showed an ethnic influence on LPS
levels, which increased from black Africans to caucasians
and to south Asians (Miller et al. 2009a). The authors
pointed out that this increase was compatible with ethnic
differences in CV risk, as an increase in the number of
components of the metabolic syndrome and in 10-year
CV risk (Framingham score) was also observed. Although
compelling evidence suggests a molecular link between
ME and CV risk, more powerful epidemiological studies
are needed to clarify the strength of this association.

Finally, research lines addressing the understanding of
LPS-mediated pathways leading to CV disease may also
lead to the identification of other molecules that also
contribute to this disease. A better understanding of these
molecular mechanisms may unravel novel and innovative
therapeutic approaches to reduce CV risk.
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