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AMPK activators: mechanisms of action and
physiological activities
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AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis, which coordinates metabolic pathways and thus

balances nutrient supply with energy demand. Because of the favorable physiological outcomes of AMPK activation on metabolism,

AMPK has been considered to be an important therapeutic target for controlling human diseases including metabolic syndrome

and cancer. Thus, activators of AMPK may have potential as novel therapeutics for these diseases. In this review, we provide a

comprehensive summary of both indirect and direct AMPK activators and their modes of action in relation to the structure of AMPK.

We discuss the functional differences among isoform-specific AMPK complexes and their significance regarding the development of

novel AMPK activators and the potential for combining different AMPK activators in the treatment of human disease.

Experimental & Molecular Medicine (2016) 48, e224; doi:10.1038/emm.2016.16; published online 1 April 2016

INTRODUCTION

As a cellular energy sensor, AMP-activated protein kinase
(AMPK) is activated in response to a variety of conditions
that deplete cellular energy levels, such as nutrient starvation
(especially glucose), hypoxia and exposure to toxins that inhibit
the mitochondrial respiratory chain complex.1,2 AMPK is a
serine/threonine protein kinase complex consisting of a
catalytic α-subunit (α1 and α2), a scaffolding β-subunit
(β1 and β2) and a regulatory γ-subunit (γ1, γ2 and γ3;
Figure 1). Ubiquitous expression of AMPKα1-, β1- and
γ1-subunits in many tissues makes the α1β1γ1 complex a
reference for AMPK assays to identify AMPK activators.
However, given the unique functions and/or subcellular (or
tissue)-specific distribution of the distinct AMPK complex,3–5

referencing screening to the α1β1γ1 complex may present a
limited range of the physiology of AMPK. In line with this
notion, increasing evidence shows that inactivating mutations
and genetic deletion of specific isoforms produce tissue-specific
physiological results.6–8 Mutations in the AMPKγ2 subunit
have frequently been observed in human cardiomyopathies,
and deletion of the AMPKα2 subunit, but not α1, has been
shown to decrease infarct volume in mouse models of stroke.

Allosteric activation of AMPK by AMP
The first class of direct AMPK activators is small molecules that
mimic cellular AMP. These molecules trigger a conformational

change in the AMPK complex that allows further activation by
phosphorylation of Thr-172 in the AMPKα subunit.9,10 The
molecular mechanism underlying allosteric activation of AMPK
by AMP binding has been demonstrated by several recent
studies of the three-dimensional structure of AMPK.11–13 This
crystal structure has shown the importance of cystathionine-β-
synthase domain repeats within the AMPKγ subunit in the
molecular mechanism by which AMPK is activated in response
to cellular adenosine nucleotides (AMP, ADP or ATP). Four
consecutive cystathionine-β-synthase domains in the AMPKγ
subunit provide four potential adenine nucleotide-binding
sites. These sites are numbered Sites 1–4, according to the
number of the cystathionine-β-synthase domain repeat
carrying a conserved aspartate residue involved in ligand
binding.11,14,15 In the mammalian AMPKγ1 subunit, Site 2
appears to be always empty and Site 4 to have a tightly bound
AMP molecule, whereas Sites 1 and 3 represent the regulatory
sites that bind AMP, ADP or ATP, which compete for
binding.16 AMP binding to Site 1 appears to cause allosteric
activation, whereas binding of AMP or ADP to Site 3 appears
to modulate the phosphorylation state of Thr172.13 Although
cellular ADP levels are higher than those of AMP, a recent
study has shown that AMP is a bona fide activator that
enhances LKB1-dependent Thr 172 phosphorylation in vivo.17

AMP binding to the AMPKγ subunit serves as an important
regulatory feature of the conformational switch that activates
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the AMPK complex. The catalytic AMPKα subunit contains an
N-terminal kinase domain (KD) immediately followed by an
autoinhibitory domain (AID). The three-dimensional structure
shows that the AID interacts with the small and large lobes of
the KD and causes AMPK to be maintained in an inactive
conformation. Once AMP binds to the AMPKγ subunit, the
α-RIM (regulatory subunit-interacting motif) between the
KD/AID and a globular C-terminal domain of the AMPKα
subunit interact with one of the regulatory adenosine
nucleotides on the AMPKγ subunit in a manner akin to two
arms wrapping around the adenosine. These conformation
changes release and expose the KD of AMPKα from its AID to
activate the AMPK complex.

Regulation of AMPK activity by upstream kinases
Physiological AMPK activation involves phosphorylation of
Thr-172 within the activation loop of the KD in the AMPKα
catalytic subunit. Two upstream kinases, LKB118 and CaMKKβ
(Ca2+/calmodulin-dependent protein kinase β),19 have been
extensively documented to phosphorylate Thr-172 of the
AMPKα subunit. Notably, there are lines of evidence showing
that the LKB1-dependent AMPKα phosphorylation at Thr172
is greatly enhanced by the binding of AMP to the AMPK
γ-subunit, and, at the same time, the AMP-binding inhibits
dephosphorylation of this activating phosphorylation by
protein phosphatases, such as PP2A and PP2C in vitro.20,21

Interestingly, the effect of AMP on Thr172 phosphorylation of
the AMPK α-subunit appears to be dependent on N‐terminal
myristoylation of the β-subunit, although the underlying
mechanism remains to be demonstrated.22 In contrast to the
LKB1 complex, another upstream AMPK kinase, CaMKKβ, can
activate AMPK in response to increases in cellular Ca2+ without
any significant change in ATP/ADP/AMP levels. Treatments
that deplete cellular ATP do not effectively activate AMPK in
LKB1-negative tumors because the basal activity of CaMKKβ is
too low to affect the phosphorylation status of AMPKα Thr172,
although the increase in AMP due to ATP depletion makes the
AMPK α-subunit a better substrate for CaMKKβ. However,
these treatments can cause AMPK activation under conditions
that elevate intracellular Ca2+. These data indicate that the
phosphorylation/dephosphorylation equilibrium at Thr-172 on
the AMPK α-subunit involves AMP binding to the AMPKγ
subunit and N-terminal modification of the AMPK β-subunit,
adding another a level of complexity to the AMPK activation
mechanism.

Physiological functions of AMPK
As its name suggests, AMPK has a key role in maintaining the
balance between anabolic and catabolic programs for cellular
homeostasis in response to metabolic stress.23–28 Given the
functional attributes of AMPK in glucose/lipid homeostasis,
body weight, food intake, insulin signaling and mitochondrial

Figure 1 Functional domains of AMP-activated protein kinase (AMPK) subunits. The mammalian α1/α2 and β1/β2 isoforms are very
similar, and their characteristic features are shown. AMPKα subunits: KD, kinase domain containing Thr-172 for the activation by
upstream kinases; AID, autoinhibitory domain; two α-RIM, regulatory subunit interacting motifs triggering the conformational changes in
response to AMP binding to the AMPKγ subunit; α-CTD, C-terminal domain binding to the β-subunit. AMPKβ subunit: CBM, carbohydrate-
binding module, in which Ser108 is important for the action of some direct AMPK activators, such as thienopyridone (A-769662) and
salicylate; β-CTD, C-terminal domain containing α-subunit-binding site and immediately followed by the domain for γ-subunit interaction.
AMPKγ subunit: three γ-subunit isoforms have variable N-terminal domains (NTDs); four CBS, cystathione-β-synthases domain, which
forms two Bateman domains that create four adenosine nucleotide-binding sites (Sites 1–4). Site 2 appears to be always empty and Site 4
to have a tightly bound AMP, whereas Sites 1 and 3 represent the regulatory sites that bind AMP, ADP or ATP in competition.
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biogenesis, AMPK is considered to be a major therapeutic
target for the treatment of metabolic diseases including type 2
diabetes and obesity.29,30

A number of studies have shed light on the role of AMPK in
tumorigenesis.31 An initial report connecting AMPK to cancer
biology described the discovery of the tumor suppressor LKB1
as a major AMPK upstream kinase.32 Genetic mutations of the
LKB1 gene are responsible for inherited Peutz-Jeghers syn-
drome, which is characterized by the development of hamar-
tomatous polyps in the intestine.33 Since then, a number of
in vitro and in vivo studies have suggested that AMPK indeed
mediates the tumor-suppressor effects of LKB1. This is
supported by findings that drugs that are capable of activating
AMPK (metformin, phenformin, A-769662) delay the onset of
tumorigenesis in in vivo models.34,35 Much effort has been
made to understand the molecular mechanisms underlying the
antitumorigenic functions of AMPK. These studies have shown
that mTORC136,37 and RNA polymerase I transcription factor
TIF-1A,38 both of which are required for rapidly proliferating
cells, are under the control of AMPK. In addition, AMPK
activation has been shown to cause G1 cell cycle arrest, which is
associated with activation of p53, followed by induction of the
cell cycle inhibitor protein, p21.39,40 Similarly, AMPK has been
shown to cause cell cycle arrest by inducing the phosphoryla-
tion and concomitant stabilization of the cyclin-dependent
kinase inhibitor p27kip1 in response to metabolic stress.41

A recent study has described an additional layer of
p53–AMPK–mTORC1 regulation via the p53-repsonsive gene
products Sestrin1/2.42 However, it should be noted that AMPK
might protect tumor cells against the action of cytotoxic
agents, nutrient limitation and hypoxia, once the tumors are
established. Therefore, AMPK activators might be deleterious
in the treatment of cancer.

Another important aspect of AMPK biology is the role of
AMPK in autophagy, a lysosome-dependent catabolic program
that maintains cellular homeostasis.43–46 A number of studies

have demonstrated that AMPK has important roles in autop-
hagy regulation by directly phosphorylating two autophagy-
initiating regulators: a protein kinase complex ULK1 (Unc-51-
like autophagy-activating kinase)47,48 and a lipid kinase com-
plex PI3KC3/VPS34 (phosphatidylinositol 3-kinase, catalytic
subunit type 3; also known as VPS34).49 A number of reports
have demonstrated the metabolic significance of autophagy in
glycogenolysis (glycophagy)50 and lipolysis (lipophagy)51 and
even in regulating adipose mass as well as differentiation
in vivo.52 In this regard, elucidating the molecular connection
between AMPK and autophagy will provide a novel avenue to
expand the functional network of AMPK in cellular home-
ostasis, including metabolism.

Given these functional attributes, as summarized in Figure 2,
much effort has been made to develop robust AMPK assays
and to identify AMPK modulators to provide therapies for a
variety of human diseases.53–56 In this review, we present a
comprehensive summary of both indirect and direct AMPK
activators and their modes of action in relation to the structure
of AMPK, and discuss the implications of AMPK as a
therapeutic target.

INDIRECT AMPK ACTIVATORS

Practically, AMPK can be activated by any modulator that
causes AMP or calcium accumulation. These are classified as
indirect activators because a direct interaction between AMPK
and modulators is not necessary. Indirect AMPK activators are
listed on Table 1.

Biguanides
Metformin is a type of biguanide, a synthetic derivative of
guanide that is a natural product from the plant Galega
officinalis, and has been used as a first-line antidiabetic drug
because of its ability to reduce hepatic glucose production and
enhance peripheral insulin sensitivity.57 A number of studies
have demonstrated that the actions of metformin are

Figure 2 A summary of the physiological roles of AMP-activated protein kinase (AMPK).
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attributable to AMPK. Zhou et al. have revealed the molecular
mechanisms by which AMPK mediates the antidiabetic actions
of metformin: stimulation of fatty-acid oxidation and glucose
uptake, and downregulation of lipogenic genes and hepatic
glucose production.58 AMPK activation by metformin is not a
result of direct activation; instead, metformin inhibits
complex I of the mitochondrial respiratory chain, leading to
an increased AMP:ATP ratio.59 This indirect mechanism has
further been supported by the observation that metformin fails
to activate AMPK in cells expressing the AMP-insensitive

(R531G) AMPKγ2 subunit.60 Recent findings by Fullerton
et al. have also shown that phosphorylation of acetyl-CoA
carboxylase by AMPK is required for the lipid-lowering effect
and the insulin-sensitizing effects of metformin, thereby
supporting the role of AMPK in metformin action. However,
the role of AMPK has been called into question by recent
work showing that metformin lowers blood glucose levels in
animal models of liver-specific AMPKα knockout or LKB1
knockout.61 Thus, further studies are required to distinguish
the AMPK-dependent and -independent effects of metformin.

Table 1 Indirect AMPK activators

AMPK activators
J Kim et al

4

Experimental & Molecular Medicine

albertcochet
Texte surligné 

albertcochet
Texte surligné 

albertcochet
Texte surligné 

albertcochet
Texte surligné 

albertcochet
Texte surligné 

albertcochet
Texte surligné 

albertcochet
Texte surligné 

albertcochet
Texte surligné 

albertcochet
Texte surligné 

albertcochet
Texte surligné 

albertcochet
Texte surligné 

albertcochet
Texte surligné 

albertcochet
Texte surligné 

albertcochet
Texte surligné 

albertcochet
Texte surligné 

albertcochet
Texte surligné 

albertcochet
Texte surligné 

albertcochet
Texte surligné 

albertcochet
Texte surligné 



Thiazolidinedione
Thiazolidinediones (TZDs), also known as glitazones, are a
class of insulin-sensitizing drugs including troglitazone,
pioglitazone and rosiglitazone. TZDs act primarily by activating
the nuclear hormone receptor peroxisome proliferator-
activated receptors (PPARs), notably PPARγ, for which their
affinity is highest. They are also known to exert their
antidiabetic effect in part through AMPK activation. TZDs
rapidly activate AMPK in a variety of tissues including skeletal
muscle,62,63 liver and adipose tissue,64 and the activation
mechanisms are associated with accumulation of AMP as a
result of inhibiting complex I of the mitochondrial respiratory
chain.65 In addition, TZD treatment induces the expression
and release of adiponectin from adipocytes,63 which in turn
activates AMPK in skeletal muscle and the liver, resulting in
increased glucose uptake and fatty-acid oxidation, and
decreased hepatic glucose production. Thus, AMPK can be
activated by TZDs through at least two different mechanisms.

Polyphenols
In addition to pharmaceutical agents, numerous naturally
occurring compounds and phytochemicals have been shown
to activate AMPK. Among them are polyphenols, a structural
class of natural or synthetic products characterized by the

presence of multiples of phenol structure units. Despite the
structural variance, numerous polyphenols are capable of
activating AMPK, and they exert beneficial effects on type 2
diabetes and metabolic syndrome. These include resveratrol
from red grapes,66,67 quercetin from many plant units including
fruits, vegetables and grains,68 genistein found in a number of
plants such as soybeans,69 epigallocatechin gallate from green
tea,69 berberine from Coptis chinensis70 and curcumim from
Curcuma longa.71 Mechanisms of activation of AMPK by these
compounds appear to require the elevation of AMP levels
because many of these compounds are known to inhibit
mitochondrial ATP production. Resveratrol, quercetin, epigallo-
catechin-3-gallate and curcumin target and inhibit the mito-
chondrial F1F0–ATPase/ATP synthase,72,73 whereas berberine is
associated with the inhibition of respiratory chain complex I.74

The molecular mechanism of AMPK activation by resveratrol,
berberine and quercetin has further been supported by the
observation that these compounds fail to activate AMPK in cells
expressing AMP-insensitive (R531G) AMPKγ2 subunit.60

Ginsenoside
Panax ginseng has been long known to have favorable effects
in type 2 diabetes and metabolic syndrome. Ginsenosides,

Table 2 Direct AMPK activators
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a class of tetracyclic triterpene glycosides, are the major
pharmacological ingredients in ginseng. To date, more than
80 structurally different ginsenosides have been isolated from
the plant genus Panax, and a number of ginsenosides,
including Rb1, Rb2, Rc, Re, Rg1, Rg2 and Rg3, have been
reported to activate AMPK, resulting in an increased glucose
uptake, decreased hepatic triglyceride and cholesterol levels,
and the inhibition of lipogenesis and hepatic glucose
production.75 The mechanisms for AMPK activation by
ginsenosides are largely unknown; however, presumably these
compounds are likely to activate AMPK via AMP-dependent
mechanisms because the ginsenoside, Rb1, has been reported
to increase the intracellular AMP:ATP ratio.76

α-Lipoic acid
α-Lipoic acid (ALA), a naturally occurring dithiol compound
derived from octanoic acid, has a critical role in mitochondrial
bioenergetics reactions by acting as a cofactor for pyruvate
dehydrogenase and α-ketoglutarate dehydrogenase. Owing to
its powerful antioxidant property, ALA has gained substantial
attention for use in managing diabetic complications.77 Recent
studies have also demonstrated that ALA exerts beneficial
effects on metabolic syndrome, lipotoxic cardiomyopathy and
endothelial dysfunction through the activation of AMPK in
various tissues.78–80 Although the underlying mechanisms for
AMPK regulation by ALA are poorly understood, Shen et al.
have reported that ALA increases the intracellular calcium level
in C2C12 myotubes, suggesting that CaMKK, but not LKB1, is
responsible for AMPK activation.81 In the hypothalamus,
where AMPK is implicated in the regulation of appetite, ALA
suppresses AMPK activity, leading to reduced food intake.82

Further examination is required to understand the molecular
mechanism of the regulation of AMPK by ALA.

Other AMPK modulators
Although intracellular energy levels are a major determinant of
AMPK activity, AMPK is highly sensitive to the cellular level of
reactive oxygen species (ROS).83 In many cases, oxidative stress
results in intracellular ATP depletion. However, recent studies
have revealed that ROS can stimulate AMPK activity even
without a decrease in cellular ATP.84,85 Oxidative modification
of the AMPKα subunit appears to be a major mechanism by
which AMPK is activated under conditions of oxidative
stress.86 Therefore, any modulators capable of inducing
intracellular ROS generation can activate AMPK without an
associated decrease in ATP levels. Such a modulator is
cryptotanshinone from Salvia miltiorrhiza Bunge, which exerts
antidiabetic87 and anticancer effects88 through ROS-dependent
AMPK activation. DNA-damaging agents, such as cisplatin89 or
metals, including arsenite, vanadate and cobalt,90 activate
AMPK through ROS generation.

DIRECT AMPK ACTIVATORS

Several AMPK activators directly bind to and activate AMPK
without any significant change in cellular ATP, ADP or AMP
levels. Instead, these activators induce conformation changes in

the AMPK complex, leading to activation, possibly through a
direct interaction with a specific subunit of AMPK (Table 2).
The identification of A-769662 by Abbott Laboratories in 2006
provided a novel insight into the development of direct AMPK
activators by demonstrating that AMPK activation with non-
nucleotide ligands is possible. In addition, it opened up the
possibility of developing an activator with AMPK heterotrimer
specificity. Since then, numerous studies reporting direct
AMPK activators have provided meaningful advances regarding
isoform-specific modulators.

5-Aminoimidazole-4-carboxamide riboside
The first direct AMPK activator, 5-aminoimidazole-4-
carboxamide riboside (AICAR), is an adenosine analog taken
up into cells by adenosine transporters and phosphorylated by
adenosine kinase, thus generating the AMP-mimetic, AICAR
monophosphate (ZMP).91,92 Similarly to cellular AMP, ZMP
binds to site 3 on the AMPKγ subunit. ZMP does not change
the ADP:ATP ratio or alter oxygen uptake, which occurs with
many AMPK activators through the inhibition of mitochon-
drial function.11 Although ZMP is a much less potent AMPK
activator than AMP in cell-free systems, AICAR directly
activates AMPK in most cells because ZMP can accumulate
to millimolar concentrations in cells. ZMP is a natural
intermediate in the purine nucleotide synthetic pathway and
is metabolized by AICAR transformylase, which catalyzes
synthesis of the purine nucleotide inosinate.93 Therefore, the
effect of AICAR seems to be more apparent in quiescent,
primary cells than in rapidly proliferating cells. Consistently
with this notion, anticancer agents that inhibit AICAR trans-
formylase, such as methotrexate and Pemetrexed, sensitize
tumor cells to the AMPK-activating and growth-inhibitory
effects of AICAR.94,95 These results indicate that AMPK
participates in the chemotherapeutic effects of antifolate drugs
to treat cancers. However, it should be noted that, as an AMP
analog, AICAR is able to activate many other AMP-dependent
enzymes, such as fructose-1,6-bisphosphatase.96,97

Thienopyridone (A-769662) and benzimidazole
(Compound 911) derivatives
Abbott Laboratories has developed a thienopyridone com-
pound, A-769662, which causes allosteric activation of purified
AMPK in cell-free assays.98 This compound shows many of the
metabolic effects that would be expected with AMPK activation
in vivo (increase in fat oxidation in normal rats; decreases in
body weight, plasma glucose/triglycerides and liver triglycerides
in obese mice). Unlike AICAR, A-769662 shows high specificity
toward AMPK. A-769662, similar to AMP, allosterically
activates the AMPK complex and inhibits dephosphorylation
of Thr-172 in the AMPKα subunit.99,100 However, A-769662
appears to use a different molecular mechanism to activate
AMPK.101 Notably, it allosterically activates AMPK without
Thr172 phosphorylation on the AMPKα subunit, which is
absolutely required for AMP-dependent AMPK activation.
Importantly, it requires phosphorylation of Ser108 on the
AMPKβ1 subunit. Moreover, the strong synergic AMPK
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activation by AMP and A-769662 has been observed both
in vitro and in vivo, clearly demonstrating that A-769662 and
AMP have different binding sites on the AMPK complex and
different mechanisms of activation.102 Another direct AMPK
activator, compound 911, has recently been identified.
911 has been reported to be 5–10-fold more potent than
A-769662 in allosterically activating AMPK and preventing
dephosphorylation.12 Similarly to A-769662, 991 does not
activate AMPK complexes containing the Ser108 mutation
of the AMPKβ subunit, suggesting that these two AMPK
modulators share a similar molecular mechanism of AMPK
activation. Xiao B et al.12 have solved the crystal structure of the
full-length human AMPK complex in the presence of A-769662
or 991. In this structure, both A-769662 and 911 are located at
a site between the KD of the AMPKα subunit and the
carbohydrate-binding module (CBM) of the β-subunit, a site
distinct from the adenine nucleotide-binding sites on the
AMPKγ subunit. Interestingly, both chemicals exhibit specifi-
city toward AMPK complexes containing the β1 rather than the
β2 isoform.

Salicylate (pro-drug of Asprin)
Salicylate is a natural compound traditionally extracted from
willow bark. Acetyl salicylate (aspirin) is a derivative that is
easier than salicylate to take orally and is rapidly broken down
to salicylate upon entering the circulation. Although cyclo-
oxygenases (COX1 and COX2) are the established targets for
aspirin, it has been reported recently that salicylate (although
not aspirin) is a direct activator of AMPK.103 In line with its

structural similarity to A-769662, salicylate appears to bind at a
site that overlaps with the site targeted by A-769662. Both
compounds cause allosteric activation, with salicylate antago-
nizing the effect of A-769662. In addition, the effects of both
compounds are highly dependent on the AMPKβ1 subunit but
not on AMPKβ2. Neither compound activates AMPK com-
plexes with the Ser108 mutation of the AMPKβ1 subunit.
Considering that thienopyridone (A-769662), benzimidazole
(Compound 911) and salicylate derivatives activate AMPK by
mechanisms different from most AMP-mimetics or ATP-
depleting AMPK activators, the combination of these molecules
with the indirect AMPK activators is expected to augment the
effect of AMPK on pathophysiological conditions, such as
metabolic disorders and cancers.104–107

Compound-13
Recent screening of a chemical library containing 1,200 AMP
mimetics has identified 5-(5-hydroxyl-isoxazol-3-yl)-furan-2-
phosphonic acid, termed Compound-2 (C-2), and its pro-drug
C-13, as potent allosteric activators of AMPK.108 A subsequent
study has demonstrated the molecular mechanism by which
C-2 mimics the effects of AMP to stimulate AMPK.109 One
concern, as observed with AICAR, is the possibility that C-2
may affect AMP-regulated enzymes other than AMPK (PFK1,
FBP1 and glycogen phosphorylase). However, C-2 does not
affect any of these enzymes or several enzymes that use AMP as
a substrate. In vitro cell-free assays using several AMPK
complexes have revealed that C-2 is a potent allosteric activator
of AMPK (EC50 of 10–30 nM). In fact, C-2 has been reported

Table 3 Direct AMPK activators from patent literatures
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to be 420-fold more potent than A769662 and more than two
orders of magnitude more potent than AMP.98,110 In addition,
C-2 and C-13 do not induce any significant change in adenine
nucleotide levels. Although the precise C-2-binding sites have
not been identified, evidence presented by Hunter et al.109 has
suggested that C-2 competes with AMP for binding on the
AMPKγ subunit. Surprisingly, the AMPK activators C-2 and
C-13 exhibit isoform specificity toward the AMPKα1 subunit.
Structural analyses of AMPK complexes12,13 indicate that
different sequences of AMPKα1 and α2 subunits in the
α-regulatory subunit-interacting motif-2 (α-RIM2) region,
which is used to generate AMPKα isoform-specific antibodies,
result in unique interactions of C-2 with one face of AMP
bound at Site 3 of the γ-subunit, accounting for the selectivity
of C-2 toward AMPKα isoforms. Identification of C-2/C-13
represents an example of the development of a direct and
isoform-specific AMPK modulator that is distinct from
A-769662 that shows a CBM-dependent AMPKβ subunit
specificity.109

PT-1
Another small molecule activator of AMPK, PT-1, was initially
isolated via a screen of compounds that activated the truncated
AMPKα1 construct containing only the KD and the AID.111

PT-1 activates the complete AMPK α1β1γ1 as well as the
AMPKα1 KD-AID construct but not the AMPKα1 KD con-
struct, suggesting that PT-1 directly binds to the cleft between
the KD and the AID, thereby relieving autoinhibition.
Consistently with results from a cell-free kinase assay, PT-1
has been shown to increase the phosphorylation of ACC at
Ser79, a well-characterized substrate of AMPK, in L6 myotubes
without any significant change in cellular AMP:ATP ratio.
However, this result has been questioned by a recent report by
Jensen et al.112 showing that PT-1 indirectly activates AMPK
via inhibition of the mitochondrial respiratory chain complex,
thereby increasing cellular AMP:ATP and/or ADP:ATP ratios,
instead of binding directly to the AMPKα1 subunit, as
previously suggested.111 In line with the notion that PT-1
increases intracellular AMP levels, PT-1 does not activate
AMPK in HEK293 cells expressing an AMP-insensitive
AMPKγ1 R299G mutant, suggesting that PT-1 functions as
an indirect activator. Furthermore, this study has shown that
PT-1 selectively activates the AMPK complex containing the
γ1-subunit but not γ3 in incubated mouse muscle. The authors
have proposed that the failure of PT-1 to activate γ3-containing
complexes in muscle is not an intrinsic feature of such
complexes but occurs because PT-1 does not increase cellular
AMP:ATP ratios in the distinct subcellular compartments
containing γ3-complexes. Therefore, the molecular details of
PT-1 action should be further studied to address the questions
raised by these contradictory results.

MT 63–78 (Debio0930)
Another AMPK direct modulator, MT 63–78 (Debio0930), has
recently been identified to allosterically activate AMPK.113

Biochemical analysis has shown that the effect of MT 68–78

is highly selective for the AMPK complex containing the
AMPKβ1 subunit, as was seen for A-769662 and salicylate.
Notably, MT 63–78 strongly suppresses the growth of prostate
cancer cell lines with a concomitant activation of AMPK but
without any significant change in cellular ATP, ADP and AMP
levels. Importantly, the growth-inhibitory effects of MT 63–78
on prostate cancers are at least 10–40 times higher than those
of A-769662. In many prostate cancer models, androgen is
believed to drive tumorigenesis and progression of the
cancers.114 Therefore, androgen deprivation therapy is a first
option to treat this cancer. However, in many cases, the
androgen-signaling cascade is re-activated after chemothera-
peutic treatments that target the androgen receptor, for
example, the androgen receptor antagonist MDV3100.115

Upregulation of de novo lipogenesis by androgen in prostate
cancer is also closely related to cancer development.116,117

Considering that AMPK negatively regulates de novo
lipogenesis,92,108,118,119 the combination treatment of AMPK
activators and androgen receptor inhibitors may function
cooperatively as antiprostate cancer drugs. The clinical poten-
tial of this concept has been shown in a therapeutic trial. This
trial showed that the suppression of de novo lipogenesis is the
key mechanism of AMPK inhibition of growth and that MT
63–78 enhances the inhibitory effect of androgen receptor
antagonist (MDV3100) on the growth of prostate cancer cells.
In addition, the inhibitory effect of MT 63–78 on growth is not
limited to prostate cancer cells and has also been observed in
LKB1-null A549 cells and in B-RAF-mutated (V600E) KTC-1
cells. These results suggest that MT 63–78 slows the growth
of a wide spectrum of cancers, thus increasing the chemother-
apeutic effects of current anticancer drugs.

PERSPECTIVE

Most of the current agents that have been shown to activate
AMPK in physiological trials, such as metformin, TZDs and
2-deoxyglucose, are indirect activators that inhibit oxidative
phosphorylation and glycolysis, thereby increasing the ADP
(AMP):ATP ratio. However, it is not always clear whether the
effects of these agents are mediated by AMPK. In this
sense, much effort has been focused on demonstrating the
molecular mechanisms of AMPK activators and on validating
the resulting physiologies on many human diseases.2,120

Another concern when developing AMPK activators is that
there are functional differences between isoform-specific
AMPK complexes. For instance, the AMPK α2β2γ3 complex
is predominantly activated by exercise in skeletal muscle,5 and
therefore specific targeting of the AMPK α2β2γ3. Recent
studies reporting direct AMPK activators have provided mean-
ingful advances in developing isoform-specific modulators. For
the AMPKα subunit, C-2 (or a pro-drug C-13) has a preference
for AMPK complexes containing the AMPKα1 subunit.108

Similarly to A-769662,98 several compounds including 911,12

salicylate (a pro-drug of aspirin)103 and MT 68–78113

specifically activate AMPKβ1-containing complexes but not
those containing AMPKβ2. In the case of the AMPKγ subunit,
although further studies at the cellular level are required,
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in vitro biochemical data have shown that PT-1 has a specificity
toward AMPK complexes harboring the AMPKγ1 subunit.111

In addition to these activators, a number of pharmaceutical
companies have filed patent applications for novel AMPK
activators, which are structurally unrelated to AMP. Some
representative compounds from each pharmaceutical company
are listed in Table 3. Comprehensive lists of AMPK activators
in the patent literature are available elsewhere.121,122 It is highly
intriguing that, although they have been claimed to be novel,
the majority of the direct AMPK activators listed in Table 3
show a close resemblance to the original thienopyridone
core structure of A-769662, except for the alkene oxindole
derivative reported from F. Hoffmann-La Roche AG. Given
the recent reports suggesting the AMPK-independent effects of
A-769662,100,123 further studies are needed to clarify the
molecular basis of the accumulating number of direct AMPK
activators, by comparing their activation mechanisms and by
analyzing their profiles of selectivity across AMPK complex
combinations.

One interesting aspect of AMPK activators revealed by
preclinical studies is the enhanced therapeutic effects of the
combination of different AMPK activators. As a master
regulator of lipogenic pathway,25 AMPK may be an additional
chemotherapeutic target because the upregulation of fatty-acid
synthesis is a hallmark of many cancers.124 Evidence has shown
that the combination of aspirin (salicylate) and Metformin
effectively decreases clonogenic survival of prostate and lung
cancer cells.104 Consistently with this finding, the addition of
fatty acids and/or cholesterol into the culture medium reverses
the suppressive effects of salicylate and metformin on cell
survival, indicating that the inhibition of de novo lipogenesis is
important.105,106 Similarly, direct AMPK activators may open
new therapeutic avenues for antichemotherapeutic reagents.
In the case of the conventional indirect AMPK activators, the
mechanism of action requires the upstream kinase LKB1 for
physiological AMPK activation. Therefore, the potential of
indirect AMPK activators as anticancer drugs is limited to
LKB1-deficient tumors, especially for non-small cell lung
cancers, of which more than 30% have LKB1-inactivating
mutations. In this aspect, direct AMPK activators may over-
come this limitation. The evidence shows that the growth-
inhibitory response to the AMPK activator, MT 63–78, is not
affected by the status of the upstream AMPK-activating
kinase LKB1.

In conclusion, the recent advances identifying direct AMPK
activators make AMPK a ‘druggable’ target for many human
diseases, although further studies are required to gain insight
into the molecular mechanisms by which AMPK regulates its
distinct and diverse downstream targets to produce physiolo-
gical outcomes.
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