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Abstract

Oxalate homeostasis is maintained through a delicate balance between endogenous sources, 

exogenous supply and excretion from the body. Novel studies have shed light on the essential 

roles of metabolic pathways, the microbiome, epithelial oxalate transporters, and adequate oxalate 

excretion to maintain oxalate homeostasis. In patients with primary or secondary hyperoxaluria, 

nephrolithiasis, acute or chronic oxalate nephropathy, or chronic kidney disease irrespective of 

aetiology, one or more of these elements are disrupted. The consequent impairment in oxalate 

homeostasis can trigger localized and systemic inflammation, progressive kidney disease and 

cardiovascular complications, including sudden cardiac death. Although kidney replacement 

therapy is the standard method for controlling elevated plasma oxalate concentrations in patients 

with kidney failure requiring dialysis, more research is needed to define effective elimination 

strategies at earlier stages of kidney disease. Beyond well-known interventions (such as dietary 

modifications), novel therapeutics (such as small interfering RNA gene silencers, recombinant 

oxalate-degrading enzymes and oxalate-degrading bacterial strains) hold promise to improve the 

outlook of patients with oxalate-related diseases. In addition, experimental evidence suggests 

that anti-inflammatory medications might represent another approach to mitigating or resolving 

oxalate-induced conditions.
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Introduction

Oxalate, a seemingly inconspicuous dicarboxylic acid, is one of the 20 uraemic toxins 

with the highest relative increase in uraemia1. Oxalate homeostasis is maintained by a 

complex interplay of supply, metabolic pathways and excretion (Fig. 1). Consequently, 

oxalate homeostasis can be disturbed by numerous factors. Genetic mutations can disrupt 

endogenous oxalate biosynthesis and transport, whereas dietary and microbial factors as 

well as gastrointestinal pathologies can affect oxalate absorption. Kidney disease can also 

impair the elimination of oxalate, thereby turning a harmless, low-concentration metabolite 

into a serious multisystemic threat that can affect nearly every organ and tissue in the body, 

including the cardiovascular system2–4.

Increased serum or urine oxalate concentrations have been associated with progressive 

kidney disease5,6, cardiovascular conditions2,3, and cellular and systemic inflammation7–9. 

A 2021 study also identified elevated serum oxalate concentrations as a novel risk factor for 

sudden cardiac death in patients receiving dialysis3. Novel translational research findings, 

for example, regarding the pathogenesis of atherosclerosis10, are currently helping to move 

the field from mere association to causation. Further discoveries about the pathophysiology 

of uraemic toxins such as oxalate might help reduce the still unacceptably high excess 

mortality of patients with kidney and cardiovascular disease. As new evidence on the 

clinical implications of excess oxalate accumulates, it is crucial to understand the basic 

principles governing oxalate homeostasis. New studies have, for example, further defined 

the crucial involvement of epithelial transport proteins and the gut microbiome in oxalate 

regulation11,12.

In this Review, we will examine the pathways of oxalate in the body, highlighting 

core mechanistic steps and their clinical implications. This information will provide 

the groundwork for a discussion of the pathophysiological consequences of oxalate 

accumulation. We will also consider novel interventional, pharmacological and microbial 

approaches to prevent, mitigate or resolve oxalate-related conditions that affect the kidney, 

heart and other organs.

Oxalate sources and metabolism

Oxalate is the ionized conjugate base of oxalic acid, which is the simplest dicarboxylic 

acid13,14. Oxalate is either produced endogenously as a metabolic end-product or can 

be ingested as a component of numerous foods, drinks or chemicals (Fig. 1a). Healthy 

individuals typically maintain a plasma oxalate concentration of 1–5 μM. Of note, the 

‘normal’ plasma oxalate range can vary depending on the measurement method; for 

example, one study reported that concentrations up to 11 μM were normal15–17.

Hepatic oxalate biosynthesis has been estimated to contribute 50–80% of total body oxalate 

levels, based on the measurement of the relative contribution of varying dietary oxalate 

intake on urinary oxalate levels18. Numerous molecules derived from amino acid and 

carbohydrate metabolism have been identified or suggested to be oxalate precursors (Fig. 

2 and Table 1). For example, hydroxyproline, which derives from collagen catabolism, 
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contributes an estimated 15% to urinary oxalate in healthy individuals19. Glycolate is 

another well-established oxalate precursor and has been estimated to contribute to <3% 

of oxalogenesis via peroxisomal metabolism20. An ongoing non-randomized clinical trial 

will use 13C2-glycolate infusion to estimate the contribution of glycolate to oxalate 

formation in healthy individuals21. Of note, although glycolate is thought to be present 

in most cells, its biological role is incompletely characterized22. Glyoxal is a product 

of carbohydrate autoxidation, lipid peroxidation and protein glycation that is primarily 

detoxified to glycolate by the glyoxalase system23,24. Oxalate synthesis from glyoxal in 

human erythrocytes and hepatocytes has been reported in vitro24,25, although a subsequent 

study suggested that this pathway might be of minor relevance in vivo26. Glyoxal was 

also proposed as the missing link between nephrolithiasis, hyperoxaluria and diabetes 

given that both glyoxal and oxalate excretion are elevated in patients with diabetes23,27. 

Finally, glycine is a small amino acid estimated to contribute <5% to urinary oxalate under 

physiological conditions28 (Fig. 2). Other amino acids, such as tryptophan, tyrosine and 

phenylalanine, are also potential oxalate precursors but are estimated to make only minor 

contributions to endogenous oxalate28.

Although endogenous oxalogenesis is incompletely understood, many pathways converge in 

glyoxylate as the immediate oxalate precursor19,25 (Fig. 2). In a physiologically balanced 

state, glyoxylate is enzymatically converted to either glycine or glycolate. However, excess 

glyoxylate is converted into oxalate by liver-specific lactate dehydrogenase A (LDHA)19,20. 

Exogenous substances that can be metabolized to oxalate include large quantities of 

vitamin C supplements or of the colourless toxic alcohol ethylene glycol29. Notably, the 

measurement of oxalate in biological fluids in vitro is complicated by the non-enzymatic 

conversion of ascorbic acid to oxalate under non-acidic conditions30. This process might 

also contribute to the elevated plasma oxalate concentrations measured in patients who 

receive vitamin C supplements30. Ethylene glycol, which is often used as antifreeze owing 

to its low freezing point, is most commonly ingested with suicidal intent, as a cheap 

substitute for alcohol or accidentally by children31. After rapid gastrointestinal absorption, 

the majority of ethylene glycol is metabolized to glycolaldehyde by alcohol dehydrogenase 

in the liver and then converted to oxalate through several oxidative steps31 (Fig. 2). 

Extremely elevated plasma and urine concentrations of ethylene glycol and of its metabolites 

glycolic acid and lactic acid result in severe anion-gap acidosis as well as neurological, 

cardiopulmonary and kidney impairment31.

Despite a low bioavailability of only 5–15%32,33, dietary oxalate is estimated to contribute 

to 20–50% of total body oxalate18,34 (Table 1). Oxalate ingestion varies widely across 

culinary styles and diets in different regions of the world29,35. The typical intake of 100–

200 mg/day (with a wide range) in Western diets is presumed to be harmless in patients 

with normal kidney function29,36. However, numerous studies have reported cases of acute 

nephropathy induced by the intake of extreme quantities of oxalate-rich foods (for example, 

starfruit)29. Transit studies suggest that physiological oxalate absorption mainly takes place 

in the small intestine (and, to a smaller extent, in the stomach and colon) and is modified 

by the presence of other faecal components37. Oxalate is an ionized conjugate base and is 

therefore highly susceptible to complexation with divalent cations such as Mg2+ and Ca2+, 

which bind oxalate in the faecal mass and reduce intestinal absorption14,37.
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Based on radioisotope-labelled oxalate infusion studies, >90% of oxalate is estimated 

to be eliminated via the kidney, unchanged32,38,39. A physiological oxalate excretion 

of 10–40 mg/day (0.1–0.45 mmol/day) is maintained by a combination of glomerular 

filtration and net tubular secretion (mainly in the proximal tubule)33,34,40. Only a small 

fraction of endogenous oxalate is excreted faecally34, but enteric oxalate secretion is 

upregulated in murine chronic kidney disease (CKD) models, which might help prevent 

hyperoxalaemia11,41,42.

Epithelial oxalate handling

As discussed earlier, plasma oxalate derives from metabolic production (mainly in the liver) 

and net gastrointestinal absorption of the dietary oxalate that is ingested under normal 

conditions14,37,43. When kidney function is normal, oxalate is mainly excreted via the 

kidney through glomerular filtration and net tubular secretion14,37,43. Thus, steady-state 

urinary oxalate excretion is in balance with the sum of metabolic oxalate production and net 

gastrointestinal absorption of dietary oxalate.

Epithelial transport of oxalate mediates its absorption and secretion, and several approaches 

have been used to characterize the transport pathways involved. For example, studies using 

membrane vesicles from kidney or intestine identified apical and basolateral membrane 

anion exchange activities through which oxalate can be reversibly exchanged with anions 

such as Cl−, OH−, HCO3
−, sulfate and formate44–50. Subsequently, cloned transporters from 

the solute carrier family 26 (SLC26) and SLC4 were found to mediate oxalate transport 

by some of the same modes of anion exchange. Specifically, functional expression of 

SLC26 member 1 (SLC26A1), SLC26A2 and SLC26A6 in Xenopus oocytes revealed that 

each solute carrier is capable of mediating the uptake or efflux of oxalate at high rates 

above baseline51–53. Functional expression studies also reported detectable oxalate transport 

through SLC26A3, SLC26A5, SLC26A7, SLC26A8, SLC26A9 and SLC26A11 (refs.54–57); 

SLC4A1 (also known as AE1) and SLC4A2 (also known as AE2) could also mediate 

oxalate transport58,59. Of note, determining the physiological roles of these transporters in 

transepithelial oxalate transport and oxalate homeostasis in vivo has been challenging but 

studies with knockout mice have provided some insights.

Gastrointestinal tract

Ingested oxalate is absorbed in multiple portions of the gastrointestinal tract, including the 

stomach, small intestine and large intestine14,37,43. Importantly, this absorption depends 

on its availability in soluble form because the formation of insoluble oxalate–calcium 

complexes blocks oxalate absorption14,37,43. Oxalate absorption in the gastrointestinal 

tract is largely passive (driven by the lumen-to-basolateral concentration gradient) and 

correlates positively with the amount of soluble oxalate ingested37. Transcellular absorption 

of oxalate in the stomach due to non-ionic diffusion across the apical membrane (driven 

by the extreme luminal acidity) is possible but, in the intestine, absorption seems to be 

predominantly paracellular given that the transepithelial oxalate permeability was similar 

to that of mannitol, which is a marker of paracellular permeability, across different 

segments of mouse intestine60. However, the finding that net oxalate absorption occurs 
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in the absence of a passive driving force in studies of mouse ileum and large intestine 

suggests that transcellular absorption can also occur61 (Fig. 3). Moreover, oxalate absorptive 

fluxes were reduced in tissues from Slc26a3-null mice, which correlated with a reduced 

urinary oxalate excretion compared with that of wild-type mice61. Similarly, in wild-type 

mice with hyperoxaluria induced by an oral oxalate load, a small-molecule inhibitor of 

SLC26A3 significantly decreased oxalate absorption in the colon and greatly reduced 

urinary oxalate and oxalate nephropathy in response to oxalate feeding62. These studies 

not only demonstrated transcellular oxalate absorption but also demonstrated that it is, at 

least partly, dependent on the expression and activity of the apical membrane transporter 

SLC26A3. However, although functional expression studies of SLC26A3 demonstrated 

robust activity as a Cl−–HCO3
− exchanger63, the ability of SLC26A3 cloned from multiple 

species (including humans) to transport oxalate was modest at best54,57,63,64. These findings 

suggest that SLC26A3 might only contribute to oxalate absorption as a consequence of 

interactions with other transporters that are present in native tissue but that are not co-

expressed with SLC26A3 in the reported functional expression studies.

Transcellular oxalate secretion in multiple intestinal segments opposes oxalate absorption37. 

The importance of oxalate secretion in limiting net oxalate absorption has been most 

clearly demonstrated in mouse small intestine. The apical membrane oxalate transporter 

SLC26A6, which is expressed in the kidneys, pancreas and small intestine, has robust 

activity as a Cl−–oxalate exchanger and would therefore be predicted to mediate oxalate 

efflux across cell membranes51,52,65. Accordingly, net oxalate secretion in the duodenum 

and ileum of Slc26a6-knockout mice was greatly reduced compared with that of wild-type 

mice66,67. Moreover, Slc26a6-null mice had hyperoxalaemia, which led to hyperoxaluria 

and urolithiasis; the development of urolithiasis was mouse-strain dependent66,67. Removal 

of oxalate from the diet greatly reduced both hyperoxalaemia and hyperoxaluria in Slc26a6-

null mice, indicating that the source of excess urinary oxalate was predominantly dietary67. 

These findings support a role for SLC26A6 in back-secreting oxalate that is passively 

absorbed through tight junctions (Fig. 3). Moreover, a 2021 study suggests that short-chain 

fatty acids can reduce urinary oxalate levels by upregulating SLC26A6 (ref.68). In a mouse 

model of CKD11, faecal oxalate excretion increased following induction of CKD, suggesting 

that intestinal oxalate secretion might be enhanced in response to reduced kidney excretion, 

yet this increase was absent in Slc26a6-null mice, in which CKD-induced hyperoxalaemia 

was exacerbated compared with wild-type mice11. Of note, epithelial oxalate secretion 

can also occur in the mouse large intestine in the absence of SLC26A6, indicating the 

presence of alternative pathways for apical membrane oxalate secretion, at least in this 

tissue69. The relevance of intestinal SLC26A6 expression to oxalate homeostasis in humans 

is thus far only anecdotal. In a patient with subclinical coeliac disease and without fat 

malabsorption, hyperoxaluria correlated with a markedly reduced expression of SLC26A6 

in the small intestine70 whereas, in another patient, enteric hyperoxaluria and nephrolithiasis 

were associated with a dominant-negative SLC26A6 mutation71. Knockout mice studies also 

demonstrated a role for SLC26A6 in epithelial oxalate secretion in the salivary gland72.

SLC26A1 is a basolateral sulfate–HCO3
−–oxalate anion exchanger that is expressed in 

several tissues including liver, kidney and intestine52,73–77. The initial report that Slc26a1-

null mice had hyperoxalaemia, hyperoxaluria and crystal deposition in the kidneys (similar 
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to the phenotype of Slc26a6-null mice) suggested comparable participation of SLC26A1 and 

SLC26A6 in intestinal oxalate secretion78. However, subsequent studies found that knockout 

of Slc26a1 did not impair intestinal oxalate secretion79,80 but rather reduced urinary oxalate 

excretion80. Biallelic SLC26A1 mutations that impaired the transport function (assayed as 

sulfate flux) were identified in two patients with calcium oxalate nephrolithiasis, although 

only one of the patients had hyperoxaluria (mild)81. Consequently, whether loss of function 

of SLC26A1 can cause substantial hyperoxaluria owing to defective intestinal oxalate 

secretion remains highly uncertain.

Liver

In addition to variable expression along the gastrointestinal tract, SLC26A6 and SLC26A1 

are both expressed in the liver and proximal tubule73,74,82–85. In the liver, the kinetic 

properties of basolateral SLC26A1 indicate that it is a strong candidate mediator of the 

efflux of metabolically produced oxalate into the plasma pool77, whereas apical SLC26A6 

might contribute to the reported biliary excretion of oxalate86. However, direct evidence for 

a role of these transporters in mediating oxalate transport in hepatocytes is lacking.

Kidneys

In the kidneys, oxalate is filtered and then undergoes passive absorption and active secretion 

in the proximal tubule, resulting in net secretion40,87. Net kidney oxalate secretion is 

dependent on SLC26A6 as the fractional excretion of oxalate decreased from >1 in wild-

type mice to <1 in Slc26a6-null mice88. A defect in kidney oxalate secretion in Slc26a6-

null mice would therefore be expected to lower urinary oxalate. However, Slc26a6-null 

mice have hyperoxaluria, suggesting that the aforementioned defect in intestinal oxalate 

secretion leading to enhanced net oxalate absorption causes sufficient hyperoxalaemia to 

result in hyperoxaluria even when urinary oxalate secretion is reduced. SLC26A1 is a 

plausible candidate to mediate basolateral membrane influx of oxalate in combination with 

apical SLC26A6 to accomplish oxalate secretion in the proximal tubule. However, the 

kinetic properties of SLC26A1 might preclude it from mediating a substantial influx of 

oxalate under physiological conditions77. Specifically, based on the relative affinities for 

HCO3
− and oxalate compared with their plasma concentrations, SLC26A1 was predicted 

to predominantly mediate HCO3
− rather than oxalate influx in exchange for intracellular 

sulfate in the proximal tubule77. No direct evidence of a role for SLC26A1 in mediating 

oxalate secretion by the proximal tubule is yet available, although the reduced urinary 

oxalate excretion observed in mice with global knockout of Slc26a1 (ref.80) could hint at a 

role in kidney oxalate secretion.

Interestingly, human studies demonstrated that, under fasting conditions, fractional excretion 

of oxalate is ~1, indicating little or no net secretion, although appreciable and rapid 

net oxalate secretion occurs after ingestion of an oxalate load89. Similarly, substantial 

net oxalate secretion is observed in patients with elevated plasma oxalate owing to 

primary hyperoxaluria (PH) but not in patients who form stones without PH90. The 

mechanisms underlying the upregulation of kidney oxalate secretion in response to acute 

or chronic oxalate loads remain to be defined. Another aspect of kidney oxalate handling 

that is incompletely understood is transepithelial transport beyond the proximal tubule. 
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For example, active net absorption of oxalate has been described across the kidney 

papillary epithelium91. Although this process might not substantially modify urinary oxalate 

excretion, it might modulate the local interstitial concentration of oxalate and thus affect 

crystal formation91.

Of note, independently of its role as an oxalate transporter, SLC26A6 might also be an 

important modifier of the risk of stone formation owing to its ability to interact with and 

inhibit the activity of the citrate transporter NADC1 (also known as SLC13A2)92. Knockout 

of Slc26a6 leads to increased activity of NADC1, greater reabsorption of filtered citrate, 

reduced excretion of urinary citrate and greater risk of calcium nephrolithiasis92.

Role of the microbiome in oxalate homeostasis

Trillions of bacteria colonize the human gut and are involved in diverse functions, including 

the metabolism of dietary components93,94. These bacteria are increasingly recognized 

to make important contributions to health and disease. Humans and other mammals 

lack the enzymes to metabolize oxalate and therefore rely on bacterial degradation to 

reduce intestinal oxalate, potentially reducing its absorption95. Oxalobacter formigenes is 

a specialist oxalate degrader and induces colonic oxalate secretion96–98. Epidemiological 

data have linked antibiotic use with an increase in the incidence of kidney stones99,100, and 

disturbance of oxalate-degrading microbiota might be a contributing factor101.

Numerous oxalate-degrading microbes have been identified in vitro, but the relative 

importance of each species in vivo is debated102. A 2021 systematic analysis used 

high-throughput metagenomic and metatranscriptomic data to investigate bacterial oxalate 

degradation in vivo. The study showed that the human gut microbiota in healthy adults 

comprises a diverse community that actively transcribes oxalate-degrading genes12. In 

healthy individuals, oxalate degradation is primarily performed by O. formigenes, which 

represents the largest reservoir of oxalate-metabolizing genes at the transcriptional level, 

greater than all other oxalate-degrading organisms combined, including Escherichia coli, 
Bifidobacterium spp. and Lactobacillus spp.12 (Fig. 4).

Most studies linking microbial oxalate metabolism and disease were performed by 

comparing the gut microbiome of individuals who form kidney stones to that of healthy 

individuals103–105. For example, analysis of stool cultures showed that the prevalence of O. 
formigenes was lower in individuals who form stones than in healthy individuals106, but 

this finding was not consistent with subsequent studies that used microbiome sequencing 

data107,108. Comparing the gut microbiome of individuals who form stones with that of 

cohabitating healthy adults revealed that healthy individuals had a more extensive microbial 

network with a higher abundance of connected species centred around O. formigenes, 

which suggests that they might have a greater capacity for microorganism-driven oxalate 

metabolism108. Levels of bacterial genes involved in oxalate degradation were also 

significantly lower in the microbiome of individuals who form stones, which correlated 

inversely with 24-h oxalate excretion. Similarly, the cumulative abundance of oxalate-

degrading bacteria correlated inversely with urinary oxalate103. One study also reported 

that oxalate-degrading bacteria of three taxa — Enterococcus faecalis, Enterococcus faecium 
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and Bifidobacterium animalis — were less abundant in children with kidney stones than in 

healthy children105. By contrast, an earlier study showed that patients with hyperoxaluria 

and kidney stones had a selective enrichment of oxalate-metabolizing bacterial species 

compared with healthy controls104. More translational and clinical studies are needed to 

establish the causal relationship between the abundance and function of oxalate-degrading 

microbiota and urinary oxalate.

Dysregulated oxalate homeostasis

Dysfunction in key steps of physiological oxalate homeostasis can lead to the development 

of different types of primary and secondary hyperoxaluria (Figs. 1b and 2). Hyperoxaluria 

is defined as a urinary oxalate excretion of >40–45 mg/day (0.45–0.5 mmol/day), which is 

associated with various systemic manifestations34,109.

Primary hyperoxaluria

PH comprises autosomal recessive inherited enzyme deficiencies that result in increased 

hepatic oxalogenesis (Table 2 and Fig. 2; reviewed in ref.110). The diagnosis of PH 

is primarily based on clinical presentation, including elevated oxalate concentrations 

in plasma and urine, and can be confirmed with genetic analyses110–113. The most 

common manifestations of PH include urolithiasis, nephrocalcinosis and urinary tract 

infections111,112,114. The carrier frequency in the population is estimated at 1:70, and 

estimates of disease prevalence range between 1:58,000 and <3:1,000,000 (ref.113). PH 

type 1 (PH1) is characterized by a deficiency of alanine–glyoxylate aminotransferase 

(AGT; encoded by AGXT). More than 200 different AGXT mutations have been identified, 

with a highly variable genotype–phenotype correlation (see the Human Gene Mutation 

Database)110. A 2022 study used non-canonical splicing site and copy number variant 

sequencing to improve the diagnostic accuracy from 26% to 35% in patients with suspected 

PH115. Of note, another study implemented bioinformatics to identify the microRNA 

miR-4660, which repressed AGT activity in a subgroup of patients with mutation-negative 

oxalosis116. Several mutations lead to protein aggregation and mitochondrial mistrafficking 

of AGT (in humans, AGT needs to be peroxisomal to function properly)117, which results 

in decreased or diminished enzyme activity118–120. A 2021 report suggested that lack of 

protein dimerization might be one of the mechanisms underlying AGT mistrafficking121.

PH type 2 (PH2) accounts for approximately 7.9–10% of PH cases and results from 

mutations in GRHPR, which encodes the enzyme glyoxylate reductase/hydroxypyruvate 

reductase (GRHPR). This enzyme detoxifies glyoxylate to glycolate in the cytosol and 

mitochondria of hepatocytes111,112. In GRHPR deficiency, glyoxylate and hydroxypyruvate 

accumulate and are subsequently converted to oxalate and L-glycerate by hepatic LDHA112. 

At least 39 GRHPR mutations have been described112. PH type 3 (PH3) is caused by 

a mutation in the gene encoding 4-hydroxy-2-oxoglutarate aldolase type 1 (HOGA1), 

which is primarily expressed in hepatocyte mitochondria, and accounts for 8.4–17% of 

PH cases111. HOGA1 catalyses the last step of hydroxyproline metabolism by converting 

4-hydroxy-2-oxoglutarate (HOG) into glyoxylate and pyruvate; in HOGA1 deficiency, 

HOG accumulation has been reported to inhibit GRHPR, resulting in increased oxalate 

Ermer et al. Page 8

Nat Rev Nephrol. Author manuscript; available in PMC 2023 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



production19. A 2021 report described at least 37 HOGA1 mutations111. The age of disease 

onset was reportedly earlier in PH3 than in PH2 (ref.113), but several studies report a median 

age of onset <10 years of age for all three PH types, with a range reaching into late 

adulthood4,111–113 (Table 2).

The natural history of PH evolves in two phases and their exact timelines depend on 

the severity and type of the underlying mutation. In the first phase, increased oxalate 

synthesis is compensated by hyperoxaluria that can reach extremes of up to 1–2 mmol/

1.73 m2/day and eventually results in oxalate deposition in the kidney and progressive 

kidney damage. The second phase unravels as kidney function declines, oxalate excretion 

becomes insufficient and systemic oxalate deposition ensues, which leads to secondary 

organ damage4. Although urinary oxalate concentrations have been suggested to correlate 

positively with PH progression, the most common PH1-causing AGXT mutation, G170R, 

typically correlates with less severe progression of kidney disease, compared with other 

PH1-driving AGXT mutations. This difference might be partially explained by the ability 

to reduce enzyme mistargeting in the G170R genotype through treatment with the cofactor 

pyridoxine, also known as vitamin B6 (only a few other PH1-causing mutations, such 

as AGXTF152I, respond to pyridoxine)113. Of note, in the largest study of PH2 to date, 

the progression of CKD was not associated with genotype or urinary oxalate excretion in 

an age-corrected analysis112. In this study, patients with PH2 were also less likely than 

patients with PH1 to present with CKD stage V at diagnosis or before 15 years of age112. 

In the largest study to date of patients with PH3, PH3 genotype and phenotype did not 

correlate, and urinary oxalate excretion was not significantly different between vitamin 

B6-non-responsive PH1, PH2 and PH3 (ref.111). Although kidney failure due to PH3 has 

been reported113, most studies describe milder kidney disease in patients with PH3 than 

in those with PH1 or PH2. However, these data might be biased owing to the scarcity of 

long-term outcome monitoring data and the low penetrance of HOGA1 mutations111.

Secondary hyperoxaluria

Secondary hyperoxalurias are broadly classified as enteric or dietary29. The most 

common aetiologies of enteric hyperoxaluria are Roux-en-Y gastric bypass and pancreatic 

insufficiency122; others include malabsorptive conditions, such as short bowel syndrome, 

coeliac disease, Crohn’s disease and cystic fibrosis, or the use of medications that interfere 

with intestinal oxalate absorption such as octreotide, which is a somatostatin analogue, 

or orlistat, which is a lipase inhibitor36. Dietary hyperoxaluria is most often caused by 

excessive intake of vitamin C or oxalate (discussed above)122.

All types of hyperoxaluria are characterized by three histopathological hallmarks: calcium 

oxalate crystal deposition, damage to the tubular epithelium and interstitial alterations in 

the kidney29. However, these patterns might differ between different aetiologies of oxalate 

nephropathy. For example, in one study, patients with enteric hyperoxaluria were more likely 

to have tubulointerstitial atrophy and fibrosis, whereas those with non-enteric hyperoxaluria 

had more pronounced tubular crystal accumulation and interstitial inflammation122. The 

authors hypothesized that the severity of the kidney outcomes might depend on the 

latency period following oxalate exposure. However, the mechanisms underlying these 
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differences in the clinical manifestations of enteric and non-enteric hyperoxaluria are still 

unknown. In vivo findings suggest that crystal deposition is crucial to hyperoxaluria-induced 

inflammation123.

Chronic kidney disease

In PH, increased endogenous hepatic synthesis of oxalate can lead to extreme plasma 

oxalate concentrations ranging from 80 μM to 125 μM in advanced stages of disease124. 

In people with common forms of CKD who do not have PH, plasma or serum oxalate is 

elevated owing to kidney impairment, especially in patients with kidney failure undergoing 

dialysis. Nonetheless, plasma or serum oxalate levels in these patients are not as high as 

those observed in patients with PH, except in patients with Crohn’s disease and ileocecal 

resections that are treated with maintenance haemodialysis124–126. In these patients, serum 

oxalate levels correlate with calcium oxalate supersaturation in serum samples and, in 

certain cases, might reach the serum calcium oxalate supersaturation threshold of 30 

μM124,125 (Fig. 1b). Although high plasma oxalate was associated with kidney function 

decline in primary hyperoxaluria127, data on plasma oxalate and outcomes in more 

common forms of CKD are currently limited. Nonetheless, although classically described 

as a risk factor for nephrolithiasis and acute kidney injury owing to intratubular crystal 

obstruction, the role of oxalate in the pathogenesis of CKD has been further defined 

in the past few years. Mice fed a diet high in oxalate developed a reproducible CKD 

phenotype characterized by hypertension, hyperkalaemia, metabolic acidosis, anaemia 

and hyperphosphataemia; kidney histopathology revealed fibrosis, tubular injury, atubular 

glomeruli and inflammation128. Epidemiological studies also showed that higher urinary 

and plasma oxalate levels might be associated with adverse outcomes in kidney disease. 

A prospective study of adults with common forms of CKD (Chronic Renal Insufficiency 

Cohort) in the USA showed an independent association between 24-h urinary oxalate 

excretion and both CKD progression and kidney failure6. Participants in the highest quintile 

of urinary oxalate excretion had a 33% increased risk of CKD progression and 45% 

increased risk of kidney failure; 24-h urinary oxalate excretion was also positively associated 

with greater levels of proteinuria and lower estimated glomerular filtration rate (eGFR)6. 

Importantly, plasma oxalate levels can be significantly elevated in patients with kidney 

failure on dialysis because dialysis cannot completely compensate for lost kidney excretion. 

In a post-hoc analysis of data from a randomized controlled study of patients with diabetes 

receiving dialysis in Germany, the highest quartile of blood oxalate level was associated with 

a 40% increased risk of combined cardiovascular events (composite of death from cardiac 

causes, fatal or non-fatal stroke, or non-fatal myocardial infarction)3. Blood oxalate levels 

were also significantly associated with sudden cardiac death in secondary analyses.

The role of oxalate as a biomarker in kidney transplant recipients is also unclear. Urinary 

oxalate excretion was not associated with graft survival129, but the presence of calcium 

oxalate deposits in allograft biopsy samples might be associated with delayed graft function 

and decline in allograft function130,131. In 167 kidney transplant recipients followed for 15 

years who had plasma oxalate measured 10 weeks after transplantation, plasma levels in the 

upper quartile were associated with lower long-term patient survival and graft loss; however, 

these associations were not significant when examining death-censored graft loss132.
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Metabolic diseases

Several metabolic diseases are associated with mild hyperoxaluria. For example, individuals 

with obesity have a high incidence of nephrolithiasis and hyperoxaluria, which correlates 

with decreased eGFR and increased risk of CKD133. One potential culprit is the pro-

inflammatory effect of obesity. Obese mice had a 3.3-fold increase in urinary oxalate 

excretion (adjusted for creatinine) compared with lean control mice; this increase was 

accompanied by a significant reduction in intestinal oxalate secretion. This change in 

secretion might be due to reduced expression of SLC26A6 in obese mice compared with 

lean mice134. In vitro, pro-inflammatory cytokines suppress Slc26a6 mRNA and protein 

expression134. Another group identified glyoxylate pathway modifications in the hepatocytes 

of obese mice that led to the hypermethylation and downregulation of Agxt. These changes 

resulted in a significant increase in hepatic oxalogenesis after hydroxyproline challenge135. 

Moreover, the pathophysiological overlap between oxalate excretion and diabetes is notable. 

Individuals with diabetes have an 11% increase in urinary oxalate excretion compared with 

individuals without diabetes6, which might be partly attributable to elevated concentrations 

of the oxalate precursors glyoxal and glyoxylate27. Of note, the presence of diabetes was 

associated with a 44% increase in the risk of a 50% reduction in eGFR or kidney failure 

among patients with urinary oxalate excretion of ≥16.2 mg/day compared with those with 

urinary oxalate excretion of <16.2 mg/day6.

Cellular effects of excess oxalate

As discussed earlier, oxalate can form complexes with positively charged minerals. These 

complexes can grow in size and form oxalate kidney stones that obstruct urinary flow and 

cause kidney damage133. In addition, oxalate can affect cellular function directly. In vitro, 

oxalate inhibits the proliferation of kidney epithelial cells, stimulates fibrotic transformation 

and calcification, and induces cell death128,136. Oxalate might also promote epithelial-to-

mesenchymal transformation137. Incubating mouse inner medullary collecting duct cells 

with oxalate increased expression of mesenchymal markers such as α-smooth muscle 

actin (also known as aortic smooth muscle actin) and reduced E-cadherin expression138. 

Moreover, oxalate activates nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 

in kidney epithelial cells and triggers the release of reactive oxygen species, which 

promotes oxidative stress139, and has been associated with reduced glutathione and impaired 

mitochondrial function140.

In addition to the effect of oxalate on epithelial cells, several studies have suggested that 

oxalate crystals activate inflammatory cells141. For example, oxalate crystals stimulated 

dendritic cells and macrophages to synthesize and release IL-1β via activation of 

the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome5,9. 

Moreover, exposure of human monocytes to a low dose of oxalate crystals disrupted 

mitochondrial function142. The investigators hypothesized that these biological events might 

predispose to recurrent stone formation. A subsequent study revealed that macrophages 

treated with oxalate also had decreased cellular bioenergetics, mitochondrial complex 

I and IV activity, and ATP levels compared with control cells143. These cells had 
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impaired metabolism, redox homeostasis and cytokine signalling, which compromised their 

antibacterial response in vitro and increased the risk of bacterial infection143.

A 2021 study demonstrated that the glycine-to-oxalate ratio in blood is lower in both 

patients and mice with atherosclerosis than in controls10. This effect was due to suppressed 

activity of AGT, similar to what is observed in patients with PH1. Mice deficient for 

AGT and apolipoprotein E (ApoE) had increased atherosclerosis compared with mice that 

were only deficient for ApoE, which was accompanied by the induction of hepatic pro-

atherogenic pathways associated with increased inflammation (based on changes in cytokine 

and chemokine signalling). Macrophages from AGT-deficient mice exposed to oxalate also 

showed mitochondrial dysfunction and superoxide accumulation, which led to increased 

release of the pro-atherogenic CC chemokine ligand 5 (CCL5). The observed phenotype 

could be reversed with AGXT overexpression. One of the limitations of the study was 

the high concentration of oxalate used to stimulate macrophages; although non-cytotoxic, 

a concentration of 750 μM is still several times higher than that observed in the blood of 

patients, even in those with impaired kidney excretion. Nevertheless, this study suggests a 

mechanistic link between increased plasma oxalate and atherosclerosis.

These observations support previous studies suggesting that oxalate might promote 

atherosclerosis. In vitro, supraphysiological extracellular oxalate concentrations inhibit 

the proliferation and induce oxidative stress in endothelial cells8,144. Moreover, the 

oxalate crystal-induced release of pro-inflammatory cytokine IL-1α from monocytes has 

been associated with increased risk of atherosclerotic cardiovascular events in patients 

with acute myocardial infarction or CKD, possibly by promoting leukocyte–endothelial 

adhesion and inflammation through the expression of vascular cell adhesion molecule 1 on 

endothelial cells7. Importantly, future clinical studies will need to address whether oxalate 

concentrations observed in humans with hyperoxalaemia can have the same effects as 

exposure to supraphysiological amounts of oxalate in vitro.

Therapies for oxalate dysregulation

Many conservative treatment options are available for mild types of hyperoxaluria, 

including the hyperoxaluria observed in patients with nephrolithiasis. These therapeutic 

approaches are based on the prevention of urinary calcium oxalate crystallization and 

might be as simple as adequate hydration, which has proven useful for the prevention of 

kidney stones; hyperhydration is recommended in patients with PH1 (>3 l/1.73 m2 body 

surface area/day)110,145,146. In addition, a phase I trial of tolvaptan has shown promise 

in reducing urinary calcium oxalate, calcium phosphate and uric acid supersaturation by 

increasing urine volume147. A similar effect was reported for thiazide diuretics, whose 

hypocalciuric and hypermagnesiuric properties might reduce calcium oxalate kidney stone 

formation148. Citrate administration has also been suggested to prevent the formation of 

kidney stones149,150. Moreover, a 2016 study showed that citrate and hydroxycitrate can 

dissolve calcium oxalate monohydrate crystals in vitro150. Even at concentrations three 

times lower than that of the solute, citrate and hydroxycitrate adsorption to oxalate crystal 

surfaces led to the localized dissolution of calcium and oxalate ions with comparable 

efficacy150. Of note, a 2022 report from a phase II clinical trial suggested that lemon juice 

Ermer et al. Page 12

Nat Rev Nephrol. Author manuscript; available in PMC 2023 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



might be a viable alternative to pharmaceutical citrate formulations, which are frequently 

discontinued by patients owing to adverse gastrointestinal effects151.

Targeting oxalate absorption

In enteric hyperoxaluria, several therapeutic approaches are based on the binding of 

oxalate in the intestine to prevent hyperabsorption. As described earlier, the bioavailability 

of oxalate is influenced by gut health and the presence of different faecal components 

(for example, cations, fat or medication)14,36,37. Consequently, direct supplementation of 

calcium and fat limitation (which has been reported to increase intestinal calcium–oxalate 

binding) might decrease oxalate hyperabsorption146,152. Based on the same principle of 

limiting oxalate absorption, the bile acid-binding resin cholestyramine reduced colonic 

oxalate absorption in rats by blocking the binding of oxalate to bile acids and subsequent 

intestinal reabsorption but its efficacy was variable in humans153. However, in a case 

study of a patient with short bowel syndrome, cholestyramine reduced both faecal fat and 

urinary oxalate excretion154. Calcium-containing phosphate binders, which might promote 

the formation of calcium–oxalate complexes, have also been suggested as potential oxalate-

lowering agents155. However, current KDIGO guidelines recommend limiting the use of 

calcium-based phosphate binders in patients with CKD stages G3a–G5D owing to the 

increased mortality risk associated with these compounds compared with non-calcium-based 

phosphate binders156. Following encouraging experimental results, the non-calcium-based 

phosphate binder lanthanum carbonate is currently being tested in a phase III trial in patients 

with secondary hyperoxaluria and nephrolithiasis157. Treatment with the non-calcium 

phosphate binder sevelamer hydrochloride for 1 week also led to a non-significant reduction 

in urinary oxalate in an open-label study of patients with enteric hyperoxaluria158. Of note, 

a 2021 quantum chemical study suggested that trivalent cations, such as Fe3+, Al3+ or 

La3+, rather than divalent cations as well as the chemical element neodymium, might be 

interesting oxalate-binding candidates for preclinical testing159.

Microbiome-related therapies

The effect of microbiome manipulation on oxalate homeostasis using single organisms or 

bacterial communities has been evaluated extensively in animal models and a few human 

studies (Fig. 4). Consequently, several therapeutic formulations are based predominantly on 

the oxalate-degrading capacity of certain bacteria. In rodent models of hyperoxaluria, O. 
formigenes colonization consistently led to a reduction in urinary oxalate97,160. In addition 

to oxalate degradation, O. formigenes produced a secretagogue, yet to be characterized, that 

induces oxalate secretion into the gut97. However, although the O. formigenes derivatives 

OC3 and OC5 (lyophilized O. formigenes in enteric-coated capsules, the latter with a higher 

viable cell count) are well tolerated by humans, they had mixed efficacy in phase I–III 

trials161,162.

Colonization with Bifidobacterium and Lactobacillus species also reduced urinary oxalate 

in animals97,163. Oxadrop, which is a probiotic composed of Lactobacillus acidophilus, 

Lactobacillus brevis, Streptococcus thermophilus and Bifidobacterium infantis, resulted 

in a short-lived reduction in urinary oxalate in patients with enteric hyperoxaluria164. 

Importantly, none of these trials evaluated bacterial viability in the gut following their 
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ingestion. Other bacterial strains currently being investigated in early-stage trials include 

Nov-001, UBLG-36 and SYNB8802. Nov-001 is a therapeutically engineered microbial 

combination product that includes NB1000S, which is an oxalate-degrading bacterium, and 

NB2000P, a prebiotic control molecule used to control the abundance of NB1000S; a phase 

II trial is currently recruiting patients with enteric hyperoxaluria after an encouraging phase 

I study165. UBLG-36, which is a Lactobacillus paragasseri strain, is highly effective in 

degrading oxalate in vitro166. Finally, orally administered SYNB8802, which is a synthetic 

oxalate-degrading E. coli Nissle strain, significantly reduced urinary oxalate in mice and 

non-human primates. In silico modelling based on human gastrointestinal physiology 

predicted that this strain could lower urinary oxalate by up to 71% in patients with enteric 

hyperoxaluria167.

Whole microbial transfers have also been investigated as potential approaches to modulate 

oxalate metabolism. In rats, a faecal transplant from a mammalian herbivore whose whole 

microbiome community is adapted to degrading high amounts of dietary oxalate led to 

lower urinary and faecal oxalate levels compared with the ingestion of oxalate-degrading 

isolates168; the decrease in urinary oxalate persisted for 9 months after the transfer169. 

Similarly, a faecal transplant from conventional rats, which have a gut microbiome similar 

to that of humans, into germ-free mice reduced urinary oxalate170. This transfer caused a 

reduction in SLC26A6 expression in the kidney and colon and increased expression in the 

caecum. To date, no studies have evaluated the effect of microbiome community transfer in 

humans.

Instead of administering bacterial strains, several investigators have attempted direct 

supplementation with oxalate decarboxylase (OxDC), which is the enzyme used by O. 
formigenes to degrade oxalate. A double-blind randomized controlled crossover trial of a 

proprietary OxDC in healthy individuals showed a 24% urinary oxalate reduction compared 

with placebo171. In a phase I trial, recombinant OxDC cloned from Bacillus subtilis 
significantly reduced urinary oxalate in patients with Roux-en-Y gastric bypass (mean 

66.3 mg/day, standard deviation (SD) 28.0 mg/day at baseline; 44.5 mg/day, SD 23.7 

mg/day at 4 weeks; P = 0.018), but this reduction was not significant in patients with 

idiopathic calcium oxalate stone formation (43.2 mg/day, SD 5.9 mg/day at baseline; 32.3 

mg/day, SD 3.2 mg/day at 4 weeks; P = 0.06)172. Another OxDC formulation (ALLN-177) 

significantly reduced urinary oxalate excretion in patients with preserved kidney function, 

including a phase III trial in patients with enteric and idiopathic hyperoxaluria (urinary 

oxalate excretion for all participants 77.7 mg/day, SD 55.9 mg/day at baseline; 63.7 mg/day, 

SD 40.1 mg/day after 4 days of treatment; P < 0.05)173. In a pilot study of patients with 

CKD and severe enteric hyperoxaluria, ALLN-177 reduced plasma oxalate by 29% from 

baseline174. However, a phase III study of ALLN-177 in patients with enteric hyperoxaluria 

over a 4-week period demonstrated that the reduction in urinary oxalate was only 14.3% 

greater than that achieved with placebo175. Determining whether a modest lowering of 

urinary oxalate has a clinical benefit with regard to stone disease progression will require 

long-term follow-up studies.
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Treatments for primary hyperoxaluria

Therapeutic options for primary hyperoxaluria have traditionally been scarce and the 

only curative option was combined liver and kidney transplantation110. Vitamin B6 

supplementation reduces hepatic oxalate production by restoring AGT activity and reducing 

mitochondrial mistargeting in patients with PH1 owing to specific AGXT mutations, such 

as G170R or F152I, in vivo and clinically118–120. More specifically, in vitro studies suggest 

that the monomer form of AGT is unstable and prone to misfolding and aggregation, 

which impedes peroxisomal transport; vitamin B6 promotes dimerization, which appears to 

stabilize the enzyme and may facilitate proper peroxisomal transport119,121.

In vitamin B6-non-responsive PH1, therapeutic approaches aim to inhibit the key hepatic 

enzymes that produce oxalate (glycolate oxidase, also known as hydroxyacid oxidase, 

and LDHA), for example, by using RNA interference (reviewed in refs.110,176). RNA 

interference is an innate mechanism of most eukaryotic cells that allows for sequence-

specific inhibition of gene expression via non-coding double-stranded RNA fragments 

(20–25 bp long)177,178. These small interfering RNAs (siRNAs) are recognized by an 

RNA-induced silencing complex, which induces degradation of the target mRNA177,178. 

Exogenously synthesized siRNAs have been celebrated as a major therapeutic breakthrough 

that allows the potent repression of disease-causing genes. However, researchers are still 

improving chemical siRNA modifications to optimize organ-specific drug delivery and 

reduce off-target effects, including unintended immune stimulation177,178.

siRNA-based Lumasiran is the first EMA-approved and FDA-approved PH1-specific 

treatment and must be administered subcutaneously110. This treatment silences the glycolate 

oxidase gene (HAO1) and was shown to reduce urinary oxalate by 64.1–70% compared with 

placebo in phase III trials of adults and children; the first results from another phase III trial 

(NCT04152200) are currently undergoing quality control179,180. The resulting increase in 

plasma glycolate concentrations did not appear to be associated with adverse events179, in 

contrast to the severe acidosis observed in patients with ethylene glycol poisoning leading 

to elevated plasma glycolate concentrations181. Case reports demonstrate tolerability and 

efficacy as early as the second week of life, and suggest that pre-treatment with Lumasiran 

might enable the use of isolated kidney transplantation (rather than combined with liver 

transplantation) in PH1 (refs.182,183). Nedosiran, another subcutaneously administered 

siRNA-based drug, silences LDHA and was shown to reduce urinary oxalate excretion 

by 68% after multiple doses184. The medication was also successfully used to reduce 

dialysis frequency and defer combined liver and kidney transplantation in a patient with PH1 

(ref.184); in a phase I study, nedosiran also normalized urinary oxalate excretion in one-third 

of patients with PH2 (ref.185).

Gene editing has also been used to knock out Hao1 and Ldha in animal studies. The 

CRISPR–Cas9 system was delivered by an adenovirus vector to knock out Hao1 in Agxt1−/− 

mice, which are used as a PH1 model; this treatment normalized urinary oxalate excretion 

and prevented nephrocalcinosis without toxicity186. Administration of an Ldha-targeting 

adenovirus-coupled CRISPR–Cas9 system to rats with a PH1-causing AgxtD205N mutation 

reduced LDHA expression by 50% and significantly lowered urinary oxalate excretion 

and kidney calcium oxalate deposits after an ethylene glycol challenge compared with 
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controls; the treatment also caused mild changes in hepatic glycolytic and triglyceride 

pathways187. Another study of Agxt1−/− mice treated with a single dose of an adenovirus-

coupled CRISPR–Cas9 system reduced LDHA expression by >95% and reduced urine 

oxalate to levels similar to those of wild-type animals after ethylene glycol exposure without 

significant toxic off-target effects or hepatotoxicity188. In a PH3 model (Hoga1−/− mice), 

the same CRISPR–Cas9 cleavage vector system was slightly less effective than in the PH1 

model but also induced a significant reduction in LDHA expression and urine oxalate levels 

were comparable to those of wild-type animals after hydroxyproline challenge188. Of note, 

none of the mice in the PH3 model developed kidney damage upon hydroxyproline exposure 

(in contrast to PH1 mice challenged with ethylene glycol)188. More research is needed to 

test the applicability of these findings and potential off-target effects in humans.

Immune modulation

Immune modulation is another potential approach for treating oxalate-related diseases. 

For example, inhibition of NLRP3 inflammasome activation might reduce cleavage of 

the pro-inflammatory cytokines IL-1β and IL-18 via caspase 1 and inhibit inflammatory 

cell death (pyroptosis)189. The microRNA miR-22-3p binds to NLRP3 as well as to 

long intergenic non-protein-coding RNA 339, which is highly upregulated in human 

kidney proximal epithelial cells treated with calcium oxalate monohydrate. This microRNA 

reduced calcium oxalate-induced inflammasome activation and pyroptosis in human kidney 

proximal epithelial cells in vitro190. In a study of male hyperoxaluric rats, inhibition of 

the transient receptor potential vanilloid 1 channel, which functions upstream of NLRP3, 

mitigated reactive oxygen species-induced NLRP3 activation and calcium oxalate-induced 

nephropathy but did not reduce hyperoxaluria191. Other NLRP3 inhibitors with promising 

murine in vivo results include the diarylsulfonylurea-based CP-456773, which mitigates 

crystal-induced kidney fibrosis192.

Conclusions

An abundance of evidence supports a pathological role of excess oxalate when the balance 

between oxalate intake, production and excretion is disrupted. Overall, 50–80% of oxalate is 

endogenously produced and derived from amino acid and carbohydrate metabolism, whereas 

20–50% derives from dietary intake and is absorbed predominantly in the small intestine. 

Epithelial transport of oxalate via anion exchange mediates oxalate absorption and secretion 

along the gastrointestinal tract, in the liver and in the kidneys, with SLC26A6 being the 

best-established oxalate transporter. The human gut harbours important microbial networks 

that help regulate oxalate levels, most notably the specialist oxalate degrader bacterium O. 
formigenes. Inherited enzyme defects that lead to increased endogenous oxalate production 

or increased intestinal absorption of oxalate observed in secondary hyperoxaluria can lead 

to oxalate nephropathy and kidney failure. Moreover, elevated urinary oxalate concentrations 

are associated with CKD progression, and increased plasma oxalate levels correlate with 

cardiovascular mortality in patients with kidney failure requiring dialysis. In addition, 

the presence of metabolic diseases, such as obesity and diabetes mellitus, might increase 

the risk of developing nephrolithiasis and hyperoxaluria or losing kidney function in the 

setting of high oxalate excretion. At a cellular level, oxalate inhibits proliferation, stimulates 

Ermer et al. Page 16

Nat Rev Nephrol. Author manuscript; available in PMC 2023 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fibrotic transformation and calcification, leads to the upregulation of pro-atherogenic and 

inflammatory pathways by promoting inflammasome activation and oxidative stress, and 

induces cell death.

Therapies for oxalate dysregulation aim to re-establish the physiological components 

necessary to maintain oxalate homeostasis (Table 3). Modulation of free oxalate availability 

in urine and the gut has been used as a successful strategy to mitigate nephrolithiasis and 

secondary hyperoxaluria. One promising approach on the horizon are allogeneic transfers of 

oxalate-degrading microbial communities to reduce urinary oxalate. By contrast, treatments 

for PH focus on restoring the function of enzymes involved in hepatic oxalogenesis such 

as AGT, for example, through vitamin B6 supplementation in select PH subtypes, or 

inhibition of oxalate-producing LDHA or glycolate oxidase through siRNAs or CRISPR–

Cas9 technology. Finally, immune modulation is another potential approach to prevent and 

treat the severe consequences of oxalate-related diseases.

Further research is needed to better characterize the role and therapeutic potential of 

different transporters from the SLC26 anion exchanger family and microbial communities 

in maintaining oxalate homeostasis. Important open questions include the extent to which 

oxalate is causally involved in the progression of CKD and CKD-related cardiovascular 

disease as well as effective therapeutic strategies to achieve sustained lowering of oxalate 

concentrations. Additionally, more detailed studies of the inflammatory pathways through 

which oxalate exerts its detrimental effects will likely reveal new treatment options. Robust 

clinical studies are an essential next step to translate in vitro, in vivo and observational 

clinical findings into the human setting and leverage this knowledge for the prevention and 

treatment of oxalate-related conditions in clinical practice.
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Key points

• Oxalate homeostasis is maintained through a combination of endogenous biosynthesis, exogenous supply, 
and renal and faecal excretion. Disruptions to these mechanisms caused by genetic mutations (primary 
hyperoxaluria) or increased oxalate absorption (secondary hyperoxaluria) result in oxalate nephropathy.

• Solute carrier family 26 member 6 anion transporter has an important role in the maintenance of oxalate 
homeostasis by facilitating transcellular oxalate secretion in the intestine (in contrast to paracellular absorption).

• Among several oxalate-degrading bacteria in the human gut microbiota, Oxalobacter formigenes represents a 
major reservoir of oxalate-metabolizing genes.

• Oxalate inhibits kidney epithelial cell proliferation, promotes fibrotic transformation, calcification and 
atherosclerosis, and induces cell death. These pathological pathways are probably mediated, at least in part, 
through NLRP3 inflammasome stimulation and mitochondrial disruption.

• Urinary oxalate excretion is independently associated with the progression of chronic kidney disease and 
kidney failure. Elevated blood oxalate is also associated with increased risk of cardiovascular events, in 
particular sudden cardiac death.

• Oxalate-balancing treatment options include O. formigenes analogues and oxalate decarboxylase supplements, 
small interfering RNA therapeutics that target oxalate-producing hepatic enzymes, and experimental CRISPR–
Cas9 approaches and anti-inflammatory strategies.
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Fig. 1 |. Oxalate homeostasis.
a, Physiological oxalate homeostasis. Oxalate homeostasis is maintained by a delicate 

interplay of supply (that is, hepatic production, gastrointestinal (GI) absorption of 

dietary oxalate and tubular reabsorption of circulating oxalate) and excretion (GI 

secretion and faecal oxalate, glomerular filtration, tubular secretion and urinary oxalate). 

Physiological plasma oxalate concentrations of 1–5 μM have no known negative effects 

on the cardiovascular system. b, Disturbed oxalate homeostasis and the consequences 

of hyperoxalaemia. Oxalate homeostasis might be disturbed by alterations in numerous 

pathways. Plasma oxalate concentrations can increase owing to decreased urinary excretion 
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in chronic kidney disease, increased hepatic production in primary hyperoxaluria or 

increased GI absorption in enteric hyperoxaluria. When kidney function is still sufficiently 

high to enable compensatory oxalate excretion in the kidney, hyperoxaluria can result in 

nephrocalcinosis, tubular toxicity and obstruction. Loss of kidney excretory function can 

lead to supersaturation of plasma with oxalate, which can have severe adverse effects on 

the cardiovascular system. High plasma oxalate is associated with sudden cardiac death, 

coronary artery disease, congestive heart failure and vascular calcification. Oxalate can also 

deposit in other tissues such as bone, thyroid, spleen and lungs.
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Fig. 2 |. Model of endogenous oxalate synthesis pathways.
Glyoxylate links several metabolic pathways and is thought to be the principal 

precursor molecule of endogenous oxalate in healthy humans. Glyoxylate sources include 

hydroxyproline19, which is derived from collagen metabolism and is metabolized to 4-

hydroxy-2-oxoglutarate (HOG) and its reduced form 2,4-dihydroxyglutarate (DHG) via 

three steps in the mitochondrion; HOG can be converted to glyoxylate by 4-hydroxy-2-

oxoglutarate aldolase type 1 (HOGA1). Deficiency of HOGA1 results in primary 

hyperoxaluria type 3 (PH3) but the exact mechanism by which oxalate accumulates in 

this condition is not clear4. The accumulation of HOG might inhibit glyoxylate reductase/

hydroxypyruvate reductase (GRHPR), which is ubiquitous in cytosol and mitochondria, 

and converts glyoxylate to glycolate; GRHPR deficiency causes PH2. The amino acid 

glycine is also converted to glyoxylate by d-amino acid oxidase (DAO) in the peroxisome. 

Deficiency of liver-specific, peroxisomal alanine–glyoxylate aminotransferase (AGT), which 

converts glyoxylate to glycine, results in PH1. In addition to glyoxylate, glycolate22 can be 

derived from sources such as glyoxal, which is a peroxidation product converted to glycolate 

by the glyoxalase system. Several other processes contribute to glycolate formation, 

including DNA repair (2-phosphoglycolate is converted to glycolate by phosphoglycolate 

phosphatase) and fructose or ethylene glycol metabolism (glycolaldehyde is converted 

to glycolate by aldehyde dehydrogenase). Glycolate is then converted to glyoxylate by 

liver-specific, peroxisomal glycolate oxidase (GO; also known as HAOX1). Glyoxylate is 

converted to oxalate by liver-specific lactate dehydrogenase A (LDHA).
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Fig. 3 |. Oxalate transport in the small intestine.
Most oxalate absorption in the small intestine occurs passively through the paracellular 

pathway. Transcellular oxalate secretion is mediated by apical membrane Cl−–oxalate 

exchange through the transporter solute carrier family 26 member 6 (SLC26A6). The 

transporter on the basolateral membrane that operates in combination with apical SLC26A6 

to mediate transcellular oxalate secretion in the small intestine has not yet been identified.
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Fig. 4 |. Microbial modulation of oxalate homeostasis.
Dietary oxalate is degraded by several species of the intestinal microbiota, which can 

reduce the amount of oxalate available for intestinal absorption. Several bacterial species 

can degrade oxalate, including Oxalobacter formigenes, Escherichia coli, Bifidobacterium 
spp. and Lactobacillus spp. O. formigenes also releases a secretagogue that induces oxalate 

secretion into the gut. Several microbiome-based therapies are being developed to enhance 

oxalate degradation and reduce oxalate absorption in the gastrointestinal tract. These 

therapies include supplementation with oxalate-degrading bacterial communities, use of the 

enzyme oxalate decarboxylase, which metabolizes oxalate, and use of the E. coli Nissle 

strain, which has been genetically modified to encode the oxalate degradation pathway genes 

that encode oxalyl-CoA decarboxylase (oxdC) and formyl-CoA:oxalate CoA-transferase 

(frc).
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