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Four molybdenum-dependent enzymes are known in humans,

each harboring a pterin-based molybdenum cofactor (Moco) in

the active site. They catalyze redox reactions using water as

oxygen acceptor or donator. Moco is synthesized by a

conserved biosynthetic pathway. Moco deficiency results in a

severe inborn error of metabolism causing often early

childhood death. Disease-causing symptoms mainly go back

to the lack of sulfite oxidase (SO) activity, an enzyme in cysteine

catabolism. Besides their name-giving functions, Mo-enzymes

have been recognized to catalyze novel reactions, including the

reduction of nitrite to nitric oxide. In this review we cover the

biosynthesis of Moco, key features of Moco-enzymes and

focus on their deficiency. Underlying disease mechanisms as

well as treatment options will be discussed.
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Introduction
Molybdenum (Mo) is the only trace metal of the second

row of the periodic table that exhibits biological activity

when it is ligated to a cofactor. In nature two principal

concepts of Mo cofactors have evolved, one is the iron Mo

cofactor in bacterial nitrogenase and the other is repre-

sented by a large family of enzymes with more than

100 representatives relying on the pterin-based Mo co-

factor (Moco) [1]. Moco-containing enzymes catalyze key

redox reactions in the global carbon, sulfur and nitrogen

cycles [2�]. The overall reaction is characterized by the

transfer of an oxygen atom to or from a substrate in a two-

electron transfer reaction [2�]. Moco consists of a Mo atom

covalently bound via the dithiolate moiety of a fully

reduced pterin backbone with a pterin C6-substituted

four-carbon side chain forming a third pyran ring, com-

monly referred to as molybdopterin (MPT) or metal
www.sciencedirect.com 
binding pterin [3] (Figure 1). Moco is found in all king-

doms of life, with most representatives in Prokarya that

chelate Mo by either one or two MPT moieties harboring

additional modification by guanine or cytosine [4]. In the

following, we focus on the function of Moco in men;

however, many aspects can be generalized to eukaryotic

Moco synthesis.

Molybdenum cofactor biosynthesis
In all kingdoms of life, Moco is synthesized by a conserved

biosynthetic pathway that can be divided into four steps

[3], according to the biosynthetic intermediates cyclic

pyranopterin monophosphate (cPMP), MPT and adeny-

lated MPT (MPT-AMP) (Figure 1). Moco biosynthesis

starts with the conversion of GTP into cPMP in a complex

rearrangement reaction catalyzed in humans by two pro-

teins, MOCS1A and MOCS1AB. Both proteins are

expressed from the MOCS1 gene encoding a variety of

alternatively spliced transcripts [5] of which one variant

(type I) expresses the MOCS1A protein encoded by exons

1–9. The transcript also contains a second open reading

frame encoded by exon 10 [5]. Other variants (type II and

III) represent transcripts that are derived from a truncation

or deletion of exon 9 causing a loss of the first stop codon

and a continuous open reading frame encoded by exon 1–
10, representing the MOCS1AB protein with an additional

MOCS1B domain [5]. MOCS1A binds two [4Fe-4S] clus-

ters and belongs to the family of radical S-adenosylmethio-

nine-dependent enzymes of the glycyl radical type [6].

The bacterial orthologues of MOCS1A and the MOCS1B

domain, MoaA and MoaC, respectively, have been studied

intensively leading to the discovery of their structure,

reaction mechanisms, and unique reaction intermediates

[7,8]. Recently, the complex reaction converting GTP into

cPMP has been dissected thus demonstrating that the

radical SAM protein MoaA converts GTP into 30,8-cy-

clo-7,8-dihydro-GTP (Figure 1) and that this reaction is

dependent on the C-terminal double glycine motif of

MoaA and MOCS1A providing an essential mechanism

to trigger the free radical reaction [9]. Subsequently, 30,8-

cyclo-7,8-dihydro-GTP undergoes major rearrangement

reaction at the MoaC protein to yield cPMP with the pyran

ring, a germinal diol and cyclic phosphate [10��,11]. The

chemical structure of the first stable intermediate in Moco

biosynthesis, cPMP (Figure 1), has been clarified by 13C

NMR studies [12]. Chemical synthesis of cPMP has been

achieved recently, representing the first synthetic route for

a biologically active derivative of Moco [13��].

In the second step of Moco biosynthesis, two sulfur atoms

are transferred to cPMP to form the MPT dithiolate. The

reaction is catalyzed by the enzyme MPT-synthase, a
Current Opinion in Chemical Biology 2016, 31:179–187
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Figure 1
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Biosynthesis of the molybdenum cofactor. Major and transient intermediates of the three steps are shown. Cosubstrates for each reaction step

are depicted at the arrows.
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hetero-tetrameric complex of two small (MOCS2A) and

two large (MOCS2B) subunits [4] (Figure 1). The small

subunit carries the sulfur as C-terminal thiocarboxylate

and represents the evolutionary ancestor of ubiquitin.

Sulfur transfer to MOCS2A is dependent on MOCS3, a

protein with an N-terminal MoeB-like domain, essential

for the adenylylation of MOCS2A, and a C-terminal

rhodanese domain catalyzing the sulfur transfer to

MOCS2B [4]. Recently, it was shown that MOCS3 inter-

acts with tRNA thiouridine modification protein

(TUM1), also designated as 3-mercaptopyruvate sulfur-

transferase, suggesting multiple roles of MOCS3 in sulfur

transfer reactions [14].

The third and fourth steps of Moco biosynthesis repre-

sent two succeeding reactions, resulting in the adenylyla-

tion of MPT and subsequent molybdenum insertion [1],

respectively. In humans, this reaction is catalyzed by the

multifunctional protein gephyrin, consisting of an N-

terminal G-domain (MPT adenylyltransferase, GEPH-

G) and C-terminal E-domain (Mo insertase, GEPH-E).

We showed that both reactions, which were initially

studied using the individual domains, proceed approxi-

mately 100-fold more efficiently in the full-length en-

zyme utilizing physiological molybdate concentrations

[15]. In addition, vertebrate gephyrin has an essential

function in the central nervous system where it clusters

inhibitory glycine and g-amino butyric acid (GABA) type

A receptors at postsynaptic synapses [16�].

Molybdenum enzymes
Today there are four different molybdenum enzymes

known in humans: sulfite oxidase (SO), xanthine oxido-

reductase (XOR), aldehyde oxidase (AO) and the mito-

chondrial amidoxime-reducing component, of which two

isoforms (mARC1 and mARC2) are expressed

(Figure 2a). While mARC proteins have been identified

only a few years back [17], SO and XOR are well known

for decades, they catalyze catabolic reactions in cysteine

and purine metabolism, and their structure and reaction

mechanism have been studied intensively [2]. In contrast,

the physiological functions of AO and mARC enzymes

remain to be identified, while both enzymes have been

found to function in drug metabolism [17,18]. Based on

the active site structure (Figure 2b), two families of

eukaryotic Mo enzymes have been defined, the SO-type

with a conserved cysteine forming the third equatorial

sulfur-ligand of Moco and the xanthine oxidase (XO)-

type, with the third equatorial sulfur as terminal sulfido

ligand [19]. While AO belongs to the XO family, it

remains unclear if mARC belongs to the SO family (as

suggested by a functionally important and conserved

cysteine residue) or represents a new family of Mo

enzymes [20].

SO catalyzes the two-electron oxidation of sulfite

(Figure 2a), derived from the oxidative catabolism of
www.sciencedirect.com 
cysteine, to sulfate [19], representing the terminal step

in the degradation of cysteine. SO is a homodimer with

each monomer harboring an N-terminal cytochrome

b5-type heme domain, a catalytic Moco domain and a

C-terminal dimerization domain. The enzyme is localized

in the mitochondrial intermembrane space where elec-

trons derived from sulfite oxidation are directly passed to

the physiological electron acceptor cytochrome c. The

maturation of mammalian SO has been clarified. It com-

bines a conventional leader sequence-based translocation

mechanism with the folding trap mechanism for which

the presence of Moco is strictly required [21].

XOR catalyzes the terminal two steps in purine catabo-

lism converting hypoxanthine to xanthine and xanthine to

uric acid (Figure 2a). The enzyme forms a homodimer

with a N-terminal domain binding two [2Fe-2S] clusters,

a central FAD domain and a C-terminal Moco-binding

domain that mediates dimerization. XOR is synthesized

as dehydrogenase and transfers electrons from the sub-

strate to NAD+, however, posttranslational modifications

convert the enzyme reversibly (oxidation of cysteines) or

irreversibly (proteolytic cleavage) into an oxidase (XO).

Recent crystal structures of XO in complex with substrate

analogues have further advanced the understanding of

the reaction mechanism [22]. In contrast to xanthine

dehydrogenase, XO produces superoxide anions and hy-

drogen peroxide suggesting a role of XO in cell stress

response and an important risk factor ischemia-reperfu-

sion injury [23].

AO is structurally very similar to XOR and displays an

active site, which can be superimposed to that of XO [24].

AO catalyzes the oxidation of aldehydes into carboxylic

acids producing superoxide and hydrogen peroxide simi-

lar to XO [2�]. In contrast to XO, substrate specificity is

much broader and includes heterocycles, purines, pter-

idines, which is why AO plays an important role in drug

metabolism [18]. However, physiological substrates re-

main to be identified.

The most recently identified Mo enzymes are mARC1

and mARC2 [17], which were found to metabolize several

N-hydroxylated compounds commonly used as pro-drugs

[25] (Figure 2a). mARC enzymes are monomeric, are

inserted into the outer mitochondrial membrane facing

the cytosol where they interact with cytochrome b5 and

NADH/cytochrome b5 reductase, building an electron

transfer chain towards the Mo center [17,26]. The

mARC-dependent metabolism of N-hydroxy-L-arginine,

a precursor of classical nitric oxide (NO) synthase-depen-

dent NO synthesis may suggest a role in the regulation of

NO biosynthesis [17]. Recently, a function of mARC2 in

lipogenesis has been reported [27].

Besides their primary substrates, Mo enzymes have

been associated with moonlighting functions catalyzing
Current Opinion in Chemical Biology 2016, 31:179–187
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Figure 2
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Mo enzymes and Moco structures. (a) Domain structure of chicken SO, bovine XO and human mARC1 as representative members of each type of

human Mo enzyme. Domains are depicted as colored boxes. Moco: Moco-binding domain, dimerization domain (dimer.), b5, heme cytochrome b5

domain, FAD/NAD+ binding flavin domain. The different substrates are depicted. (b) Chemical and three-dimensional structures of Moco in the SO

and XO family of Mo enzymes.
alternative reactions, such as the reduction of nitrite to

NO, a process which is well known to regulate blood

pressure, hypoxic vasodilation, cellular cyto-protection,

and mitochondrial respiration and functions under hyp-

oxic or exercise stress [28]. Given the broad substrate

specificity of XO and AO, nitrite reduction has been first

reported for those enzymes (summarized in [29]) but

recently, specific activities and in vivo evidence for NO

synthesis by SO and mARC enzymes have been reported

too [30,31]. Both enzymes were able to reduce nitrite to

NO in vitro and a fully reduced Mo(IV) active site was

found to be required. Studies with fibroblasts lacking

either SO or all Moco enzyme activities showed that
Current Opinion in Chemical Biology 2016, 31:179–187 
nitrite-dependent cGMP synthesis (which requires

NO) is mainly dependent on SO [31].

Moco and Mo enzyme deficiencies
Moco deficiency (MoCD) is a rare inborn error of metab-

olism causing the loss of all Mo enzyme activities and has

been first reported in 1978. Patients present in their

neonatal period feeding difficulties, therapy-resistant sei-

zures, high pitch crying, followed by severe neurological

abnormalities, lens dislocation of the eyes and major

dysmorphic features of the head. Until today more than

100 cases with MoCD have been reported [32��], with

most of them sharing a predominant deterioration of the
www.sciencedirect.com
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central nervous system. First symptoms are observed

within days of life, starting with feeding difficulties

followed by intractable seizures with an exaggerated

startle reaction [3]. Disease progression is accompanied

by psychomotor retardation due to progressive cerebral

atrophy and ventricular dilatation. MRI features of the

disease include global cerebral edema, cystic encephalo-

malacia, cortical and white matter atrophy, focal or bilat-

eral changes within the globi pallidi and subthalamic

regions, dysgenesis of the corpus callosum and ventricu-

lomegaly [33�] (Figure 3). Patients that survive the neo-

natal period show essentially no neuronal development,

are unable to make any coordinated movements, require

tube feeding and show no signs of communication with

their environment and usually die within their first years

of life [32��], only very few cases are reported with mild

symptoms or delayed disease onset [34].

Interestingly, most of the symptoms of MoCD are

mirrored in isolated SO deficiency (Figure 3), which is

caused by mutations in the SUOX gene [35] leading to

sulfite accumulation. Therefore, SO is seen as most

important Moco-dependent enzyme and sulfite accumu-

lation presents the primary cause of neurodegeneration in

both disorders. Sulfite accumulation is accompanied by
Figure 3
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Types of MoCD and Mo-enzyme deficiencies. (a) Three major steps of

Moco synthesis and the involved genes. MCSU encodes for the

sulfurase, which catalyzes the sulfuration of Moco, which is essential

for xanthine dehydrogenase (XDH)/XO and aldehyde oxidase (AO)

activities. Patients with mARC and AO deficiencies have not been

reported yet. (b) MRI scans of a MoCD type A patient recorded at an

age of 12 and 27 days showing the rapidly progressing brain damage

resulting in brain atrophy and cystic changes in the cerebral cortex.

Source: Figure has been modified from [3].
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changes in other S-containing metabolites such as cyste-

ine, S-sulfocysteine, thiosulfate, homocysteine and tau-

rine [3,36,37].

XOR deficiency results in the accumulation of xanthine

in urine leading to a disease termed xanthinuria, which

exist in two forms: xanthinuria type 1 and type 2

(Figure 3) [38,39]. Xanthinuria type 1 is caused by the

loss of activity of XOR resulting in an accumulation of

xanthine. In contrast, xanthinuria type 2 is caused by the

simultaneous loss of activities of XOR and AO, which is

caused by mutations in the MCSU gene encoding for a

protein necessary for the sulfuration of Moco in enzymes

of the XO family (Figure 3). In both types of xanthinuria,

a very low level of plasma uric acid and high levels of

xanthine are hallmarks of the disease. Patients of both

groups have similar clinical presentation, mostly due to

increased xanthine deposition [38]. However, the mech-

anism involved in the disease is less clear as some patients

may develop symptoms, which may lead to acute renal

failure while others remain asymptomatic.

MoCD is caused by mutations in any steps of the biosyn-

thetic pathway of Moco. Already before the identification

of Moco synthesis genes, biochemical studies identified

two types of patients that were classified as MoCD ‘type

A’ and ‘type B’ (Figure 3a). Co-culture studies with

patient-derived fibroblasts revealed that ‘type B’ cells

excreted the Moco precursor Z (later identified as cPMP),

which was taken up by ‘type A’ cells. Following the

identification of the underlying gene defects, it was found

that MoCD ‘type A’ patients carry mutations in the

MOCS1 gene, while ‘type B’ patients are defective in

MOCS2 [5]. Surprisingly, no mutations were found in

MOCS3. Mutations in the GPHN gene cause very severe

forms of MoCD [5] due to impaired synaptic inhibition, a

function for which gephyrin is also indispensible [16�].
Recently, various hemizygous defects in the GPHN gene

were found to be causative in neuropsychiatric disorders

such as epilepsy, schizophrenia and the development of

seizures [40,41,42].

Disease mechanism in MoCD and SO
deficiency
In the absence of SO activity (as seen in MoCD and SO

deficiency), sulfite accumulates within the cell and has

been found to increase reactive oxygen species [43].

Sulfite inhibits glutamate dehydrogenase, which in turn

decreases ATP synthesis in mitochondria when respiring

on glutamate. Accumulated sulfite passes the plasma-

membrane and spreads throughout the body via the

circulation. Within the extracellular space, it can reduce

disulfide bridges, primarily in membrane proteins, thus

affecting protein folding, stability, and activity. The first

sulfite scavenging mechanism is the reaction with cystine

leading to the formation of S-sulfocysteine (SSC), which

is highly abundant in MoCD and SO deficiency patients
Current Opinion in Chemical Biology 2016, 31:179–187
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(Figure 4). SSC is structurally similar to glutamate and

able to bind to N-methyl-D-aspartate (NMDA) receptors

and proposed to be the cause of seizures and subsequent

brain damage in the patients. In fact, early studies in rats

demonstrated that SSC induces the same type of brain

damage as glutamate, suggesting an excitotoxicity-based

disease mechanism. In this context we have studied

SSC-mediated neuronal cell death and found a recep-

tor-mediated calcium influx followed by calpain activa-

tion and proteolytic cleavage of synaptic proteins (Kumar

et al. unpublished results). Sulfite-dependent SSC forma-

tion results in cystine depletion, which directly impacts

glutathione synthesis [44] (Figure 4), the major antioxi-

dant in neuronal tissue and most abundant low-molecu-

lar-weight thiol in animal cells. Furthermore, the

observed accumulation of thiosulfate suggests an

increased reaction of sulfite with protein-bound persul-

fides, the latter being dependent on H2S, which is derived
Figure 4
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from the non-oxidative cysteine elimination pathway

[45]. The important function of H2S as a signaling mole-

cule in the brain has only recently been recognized [46]

and factors leading to reduced H2S levels are believed to

contribute to the pathogenesis of age-associated neuro-

degeneration such as Huntington’s disease [47��].

Treatment options
In light of the well-recognized cause of neurodegeneration

in SO deficiency and MoCD, early attempts to cure the

disease aimed to reduce the level of sulfite by dietary

restriction. While these attempts showed only moderate

clinical success, biochemical responses were observed,

showing a reduction in sulfite excretion. In a recent case

with a delayed onset of SO deficiency, dietary restriction

was very effective in stabilizing the patient and to suppress

seizure activity [48]. Based on the underlying mutation one
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 synthesized from methionine through several intermediates of the

glutathione (GSH), which is synthesized by two enzymatic reactions

ione synthetase (GS). The catabolism of cysteine follows two major

 as sulfur-containing endproducts. While the SO reaction takes place in

-sulfinyl pyruvate can either take place in the cytosol (catalyzed by

AT). Depending on the site of synthesis, cysteine sulfinic acid might

 mitochondrial membrane. Alternatively, a non-oxidative pathway leads

d can be further converted to sulphite and thiosulfate. The enzyme

g-lyase (cystathionase); CDO, cysteine dioxygenase; CSD,

te oxidase; MPST, 3-mercaptopyruvate sulfurtransferase; SQR,
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can argue that dietary restricting can suppress disease

phenotypes in mild forms of SO deficiency.

Symptomatic treatment of patients was in most cases

restricted to seizure control using phenobarbital and

midazolam, both of which targeting GABAergic synaptic

transmission. One patient case was treated with an

NMDA receptors antagonist (dextromethorphan) show-

ing moderate improvement of seizures in the patient that

had very progressed MoCD [49]. In light of recent find-

ings that show an excitotoxicity-based mechanism of

neuronal cell death (Kumar et al. unpublished results)

[44], early intervention with drugs blocking NMDA

receptor activation may slow down neurodegeneration

in MoCD.

The fact that most MoCD patients carry mutations in

MOCS1 [50] motivated us to develop a mocs1 knockout

mouse model reproducing the human disease [51]. As

these animals were unable to synthesize cPMP, we

developed a fermentation and purification procedure in

E. coli [52] to obtain purified cPMP for treatment studies.

cPMP-treated Mocs1-deficient mice developed normally,

reached adulthood, were fertile and not distinguishable

from their wild-type littermates [53]. Biochemically,

a dose and treatment interval-dependent restoration

of Moco synthesis as well as Mo-enzyme activity was

observed.

Based on the promising results of cPMP substitution

therapy in mocs1-deficient mice, treatment of a first

MOCS1 patient was initiated on day 36 of life [54].

The starting dose of 80 mg cPMP per kg body weight

was extrapolated from the animal studies and was suffi-

cient to induce a remarkable and sustained improvement

of MoCD biomarkers within days after treatment. Fol-

lowing dose adjustments to 240 mg/kg body weight, nor-

malization of biomarkers was observed. Clinical

improvement was recognized 48 hours after treatment

start; convulsions and twitching disappeared within the

first two weeks and epileptic discharges were reduced

[54]. Based on that case, a treatment plan for future

patients was developed and recently we reported a pro-

spective cohort study in 16 neonates diagnosed with

MoCD [55]. Out of 11 type A patients, treatment in eight

patients was continued for up to five years, all showing

normalization of biomarkers. Clinically, convulsions were

either completely suppressed or substantially reduced.

Three patients treated early, remained seizure-free and

showed near-normal long-term development. In conclu-

sion, cPMP substitution is the first effective therapy for

patients with MoCD type A and, when treated early

enough, it can greatly improve neurodevelopmental out-

come. Therefore, the possibility of MoCD type A needs

to be urgently explored in every encephalopathic neonate

to avoid any delay in appropriate cPMP substitution, and

to maximize treatment benefit.
www.sciencedirect.com 
Patients suffering from SO deficiency and MoCD type A

do not benefit from cPMP therapy and therefore require

alternative treatment options. In a recent study we ex-

plored the concept of enzyme substitution therapy by

first establishing a simplified SO enzyme (by deleting the

heme domain) that renders SO to accept molecular oxy-

gen as electron acceptor [56��]. Such a truncated from of

SO does not require the mitochondrial translocation  and

therefore allows intravenous infusion as enzyme substi-

tution therapy. To increase the half-life of SO, we ap-

plied surface PEGylation, which caused an increased

conformational stability with similar kinetic properties

as compared to wild type SO [56��]. Future animal

studies are required to explore the possibility of

SO-based enzyme substitution therapies of sulfite tox-

icity disorders.

Outlook
The biosynthesis of Moco is well understood. While a

deficiency in one of the four Moco-dependent enzymes

can either be asymptomatic in some cases (XOR defi-

ciency) or lethal in other cases (SO deficiency), MoCD,

however, is in nearly all cases a severe inborn error in

metabolism and characterized by a rapidly progressing

neurodegeneration. In recent years, knowledge regard-

ing the underlying mechanism causing severe brain

damage has accumulated. However, future studies are

needed to identify key players in metabolism that initiate

neuronal cell death. In light of the important role of SO,

mitochondrial dysfunction could represent a crucial entry

point for signals contributing to cell death. This knowl-

edge will be important for the treatment of future

patients suffering of MoCD by providing new concepts

in protecting the brain from rapidly progressing brain

injury. Besides cPMP, alternative therapies need to be

developed for the treatment of MoCD ‘type B’ and SO

deficiency. The physiological roles of AO and mARC are

still poorly understood and novel animal models are

instrumental to identify their primary function in me-

tabolism. Finally, the physiological relevance of nitrite

reduction by Mo enzymes needs to be further explored

and might provide an attractive target for the develop-

ment of future drugs in the treatment of cardiovascular

disorders.
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